Last Lecture \rightarrow BJTs

- Two external voltage sources are required for biasing
- Three operation modes:
 - 1) Cut-Offused for switching (digital)2) Saturationused for amplification (analog)3) Activeused for amplification (analog)
- Simplified structure of the *npn* transistor

Last Lecture \rightarrow BJTs

• npn

Voltages are measured with respect to the emitter (lowest potential)

• pnp

 $I_{\rm B}$ – base current

I_F – emitter current

I_c – collector current

Voltages are measured with respect to the emitter (highest potential)

Last Lecture → Active Model

BJTs: Conditions & Models

BJTs: Conditions & Models

9/16/2019

• Saturation

BJTs: Large Signal Analysis

1) When applicable, simplify the circuit

2) Determine if BE/EB junction is forward (transistor = "on")

- If reverse, transistor \rightarrow cut off
- If forward, transistor \rightarrow active / saturation
 - .: Make an educated guess of the region of operation
- 3) Substitute the appropriate model and or assumptions

4) Solve for the transistor operating point ($I_C \& V_{CE}$)

5) Verify proper operation @ the assumed region

- If cut off $\rightarrow V_{BE} < 0.5V$
- If active \rightarrow V $_{BE}$ >= 0.5V, V $_{CE}$ >= 0.3V
- If saturation \rightarrow V_{BE} >= 0.5V, I_C / I_B < β

Example 6.1

An npn transistor having $I_s = 10^{-15}$ A, $\beta = 100$, and $V_A = \infty$ is connected as follows: the emitter is grounded, the base is fed with a constant-current source supplying a dc current of 10µA, and the collector is connected to a 5-V dc supply via a resistance R_c of 3k Ω . Assuming that the transistor is operating in the active mode, find V_{BE} and V_{CE} . Use these values to verify active-mode operation. Replace the current source with a resistance connected from the base to the 5-V dc supply. What resistance value is needed to result in the same operating conditions?

Example 6.3

For the given circuit (R_B =10k Ω , R_C =1k Ω , V_{cc} =10V) assuming V_{BE} remains constant at 0.7V and transistor β is specified to be 50, it is required to determine the value of the voltage V_{BB} that results in the transistor operating

- a) in the active mode with V_{CE} =5V
- b) at the edge of saturation (V_{CEsat} = 0.3V)
- c) deep in saturation ($V_{CEsat} = 0.2V$) with $\beta_{forced} = 10$.

