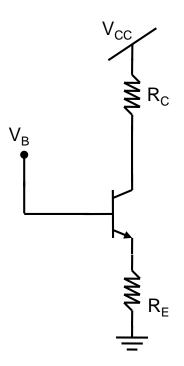
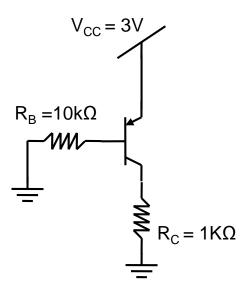
Last Lecture → BJT: Large Signal Analysis


9/16/2019

- 1) When applicable, simplify the circuit
- 2) Determine if BE/EB junction is forward (transistor = "on")
 - If reverse, transistor → cut off
 - If forward, transistor → active / saturation
 - : Make an educated guess of the region of operation
- 3) Substitute the appropriate model and or assumptions
- 4) Solve for the transistor operating point (I_C & V_{CE})
- 5) Verify proper operation @ the assumed region
 - If cut off $\rightarrow V_{RF} < 0.5V$
 - If active \rightarrow V_{BF} >= 0.5V, V_{CF} >= 0.3V
 - If saturation $\rightarrow V_{BE} >= 0.5V$, $I_C / I_B < \beta$

Example 6.5

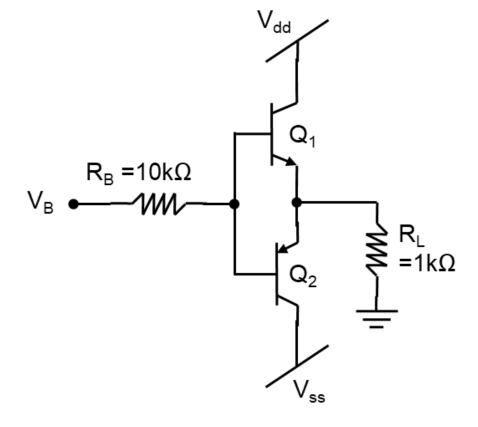
9/16/2019


For the given circuit (R_C =4.7k Ω , R_E =3.3k Ω , V_{cc} =10V, V_B =6V) determine the voltages at all nodes and the currents through all branches. Assume that the transistor β is specified to be at least 50 and V_{BE} =0.7V for all currents.

Problem 6.51

9/16/2019

For the following circuit, assuming β =50 and V_{EB} =0.7V for all currents, determine the voltage V_c at the collector terminal. To what value should R_B be increased or decreased in order for the transistor to change operating modes.



Example 6.12

9/16/2019

For the following circuit determine the voltages at all nodes and the current through all branches assuming:

- a) $V_{BE} = 0.7V$, $\beta = 100$, $V_{dd} = -V_{ss} = 5V$, and $V_{B} = 5V$
- b) $V_{BE} = 0.7V$, $\beta = 100$, $V_{dd} = -V_{ss} = 5V$, and $V_{B} = 0.3V$

