Last Lecture \rightarrow BJT: Large Signal Analysis

- 1) When applicable, simplify the circuit
- 2) Determine if BE/EB junction is forward (transistor = "on")
 - If reverse, transistor \rightarrow cut off
 - If forward, transistor \rightarrow active / saturation
 - ∴ Make an educated guess of the region of operation
- 3) Substitute the appropriate model and or assumptions
- 4) Solve for the transistor operating point (I_C & V_{CE})
- 5) Verify proper operation @ the assumed region
 - If cut off $\rightarrow V_{BE} < 0.5V$
 - If active \rightarrow V_{BE} >= 0.5V, V_{CE} >= 0.3V
 - If saturation \rightarrow V_{BE} >= 0.5V, I_C / I_B < β

Electronics I

Example 6.12

9/16/2019

For the following circuit determine the voltages at all nodes and the current through all branches assuming:

a)
$$V_{BE}$$
=0.7V, β =100, V_{dd} = - V_{ss} =5V, and V_{B} =5V
b) V_{BE} =0.7V, β =100, V_{dd} = - V_{ss} =5V, and V_{B} =0.3V

Electronics I

Example 6.11

9/16/2019

3

For the following circuit determine the voltages at every node and the bias currents of transistors Q_1 and Q_2 . Assume $V_{BE} = |V_{EB}| = 0.7$ and $\beta = 100$.

KVL V_{be} of Q_1 (with Thevenin equivalent circuit) $V_{th} = R_{th} \cdot I_1 + V_{BE1} + R_{E1} \cdot I_{E1}$ $\rightarrow I_{B1} = 12.8 \mu A$

KVL V_{eb} of Q₂ $R_{C1} \cdot [I_{C1} - I_{B2}] = V_{EB2} + R_{E2} \cdot I_{E2}$ $\rightarrow I_{B2} = 27.5 \mu A$

Electronics I

Large-Signal vs Small Signal Behavior

- Bias current is stablished through V_{BB} and supplied by V_{cc}
- AC signal is coupled through the capacitor and superimposed to the DC signal

Small Signal Parameters

Small Signal Equivalent Circuit

