Exam \#2 \rightarrow Wednesday, October 16

BJTs - Chapter \#6:

1) Semiconductor Physics
2) Regions of Operation
3) Large Signal Model
4) Large Signal Analysis
5) Small Signal Model
6) Small Signal Analysis

Electronics I

Last Lecture \rightarrow Common-Emitter Amplifier

Electronics I

Problem 6.107

Assuming β is very large and the transistor is operating in active mode, find the collector bias current I_{C}. Using the small-signal model analyze the circuit to determine v_{01} / v_{i} and v_{02} / v_{i}. Determine the resistance seen by the input source $\left(V_{A}=\infty\right)$ and the output resistances from v_{01} and $v_{02}\left(V_{A}=100 \mathrm{~V}\right)$.

$$
\begin{aligned}
& V_{C}=3.35 V \\
& I_{c}=0.5 m A \\
& g_{m}=20 \mathrm{mS} \\
& r_{\pi}=\infty \\
& r_{0}=200 \mathrm{k} \Omega
\end{aligned}
$$

Electronics I

Common Collector Amplifier

Electronics I

Exercise 6.44

For the following circuit determine

1. the voltage gain $v_{0} / v_{i}\left(r_{0}=\infty\right)$
2. the impedance seen by the input source $\left(r_{0}=\infty\right)$
3. the output impedance

BJT - Single Stage Amplifiers

Common Emitter - CE

Common Collector - CC

Common Base - CB

Single Transistor Bipolar Amplifier	Common-Emmitter CE	Common-Coliector CC	Common-Base CB
Voltage Gain $A_{v}=\frac{v_{0}}{v_{i}}$	$\cong-\frac{g_{m}}{1+g_{m} Z_{e}} \cdot R_{o} / / Z_{c}$	$\cong+\frac{g_{m}}{1+g_{m} Z_{e}} \cdot Z_{e}$	$=+g_{m} \cdot R_{o} / / Z_{c}$
Input Resistance \qquad R_{i}	$=r_{\pi}\left(1+g_{m} Z_{e}\right)$	$=r_{\pi}\left(1+g_{m} Z_{e}\right)$	$\cong \frac{1}{g_{m}}$
Output Resistance R_{0}	$=r_{o}\left(1+g_{m} Z_{e}\right)$	$\cong \frac{1}{g_{m}}+\frac{Z_{b}}{\beta_{o}+1}$	$=r_{o}\left[1+g_{m}\left(Z_{i} / / Z_{e}\right)\right]$

Common-Collector
CC
$\cong+\frac{g_{m}}{1+g_{m} Z_{e}} \cdot Z_{e}$
$=r_{\pi}\left(1+g_{m} Z_{e}\right)$
$=r_{o}\left[1+g_{m}\left(Z_{i} / / Z_{e}\right)\right]$

Electronics I

Problem 6.155

For the given circuit, assuming $\beta_{1}=50, \beta_{2}=100, r_{0}=\infty$ and $V_{B E}=0.7 \mathrm{~V}$,
a) find the dc emitter currents of Q_{1} and Q_{2} along with the dc voltages $V_{B 1}$ and $V_{B 2^{\circ}}$
b) Assuming a load resistance $R_{L}=1 \mathrm{k} \Omega$ is connected to the output terminal, determine the overall voltage gain $v_{0} / v_{\text {sig }}$ and the input resistance $R_{\text {in }}$.

Electronics I

Problem 6.154

For the given circuit, assume $\beta=100$ and $V_{B E}=0.7 \mathrm{~V}$.
a) Find the dc emitter currents and the small signal parameters.
b) Determine the overall voltage gain $v_{o} / v_{\text {sig }}$ and the input resistance $R_{i n}$.
c) Repeat b) for the case when capacitor C_{B} is open-circuited. Compare the results with those obtained in b).

Problem 6.147

*6.147 The amplifier of Fig. P6.147 consists of two identical common-emitter amplifiers connected in cascade. Observe that the input resistance of the second stage, $R_{\mathrm{in} 2}$, constitutes the load resistance of the first stage.
(a) For $V_{C C}=9 \mathrm{~V}, R_{1}=100 \mathrm{k} \Omega R_{2}=47 \mathrm{k} \Omega, R_{E}=3.9 \mathrm{k} \Omega, R_{C}=$ $6.8 \mathrm{k} \Omega$ and $\beta=100$, determine the dc collector current and dc collector voltage of each transistor.
(b) Draw the small-signal equivalent circuit of the entire amplifier and give the values of all its components.
(c) Find $R_{\mathrm{in} 1}$ and $v_{b 1} / v_{\text {sig }}$ for $R_{\text {sig }}=5 \mathrm{k} \Omega$
(d) Find $R_{\mathrm{in} 2}$ and $v_{b 2} / v_{b 1}$.
(e) For $R_{L}=2 \mathrm{k} \Omega$, find $v_{o} / v_{b 2}$.
(f) Find the overall voltage gain $v_{o} / v_{\text {sig }}$.

Problem 6.136

For the given circuit, using a 3-V power supply,
a) and assuming $R_{b 2}=\infty$, design R_{c} and $R_{b 1}$ to provide $I_{c}=3 \mathrm{~mA}$ and $\mathrm{V}_{\mathrm{c}}=\mathrm{V}_{\mathrm{cc}} / 2$ for $\beta=90$.
b) Find V_{c} and I_{c} for $\beta=\infty$.
c) Re design $R_{c}, R_{b 1}$ and $R_{b 2}$ for $\beta=90$ and using a current through $R_{b 2}$ equal to the base current.
d) Find V_{c} and I_{c} for $\beta=\infty$.

Problem 6.140

For the given circuit, assuming all transistors to be identical with β infinite,
a) derive an expression for the output current I_{0}, and show that by selecting $R_{1}=R_{2}$ and keeping the current in each junction the same, the current I_{0} will be $I_{0}=V_{C C} /\left(2 R_{E}\right)$
b) What must be the relationship of R_{E} to R_{1} and R_{2} be?
c) For $V_{c c}=10 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{BE}}=0.7 \mathrm{~V}$, design the circuit to obtain an output current of 0.5 mA .
d) What is the lowest voltage that can be applied to the collector of Q_{3} ?

Problem 6.68

Assuming $\beta=$ infinite, design the given circuit so that the bias currents in Q_{1}, Q_{2}, and Q_{3} are $1 \mathrm{~mA}, 1 \mathrm{~mA}$, and 2 mA , respectively, and $\mathrm{V}_{3}=0, \mathrm{~V}_{5}=-2 \mathrm{~V}$, and $\mathrm{V}_{7}=1 \mathrm{~V}$.

