Last Lecture → BJT Single Stage Amps

10/9/2019

Single Transistor Bipolar Amplifier	Common-Emmitter CE	Common-Collector CC	Common-Base CB
Voltage Gain $A_v = rac{v_o}{v_i}$	$\cong -\frac{g_m}{1+g_m Z_e} \cdot R_o //Z_c$	$\cong + \frac{g_m}{1 + g_m Z_e} \cdot Z_e$	$=+g_m\cdot R_o//Z_c$
Input Resistance R_i	$= r_{\pi}(1 + g_m Z_e)$	$=r_{\pi}\left(1+g_{m}Z_{e}\right)$	$\cong \frac{1}{g_m}$
Output Resistance R_o	$=r_o(1+g_mZ_e)$	$\cong \frac{1}{g_m} + \frac{Z_b}{\beta_o + 1}$	$= r_o[1 + g_m(Z_i//Z_e)]$

10/9/2019

+9 V

For the given circuit, assume β =100 and V_{BE} =0.7V.

a) Find the dc emitter currents and the small signal parameters.

b) Determine the overall voltage gain v_o/v_{sig} and the input resistance R_{in} .

c) Repeat b) for the case when capacitor C_B is open-circuited. Compare the results with

those obtained in b).

10/9/2019

*6.147 The amplifier of Fig. P6.147 consists of two identical common-emitter amplifiers connected in cascade. Observe that the input resistance of the second stage, R_{in2} , constitutes the load resistance of the first stage.

- (a) For $V_{CC} = 9$ V, $R_1 = 100 \text{ k}\Omega$, $R_2 = 47 \text{ k}\Omega$, $R_E = 3.9 \text{ k}\Omega$, $R_C = 6.8 \text{ k}\Omega$, and $\beta = 100$, determine the dc collector current and dc collector voltage of each transistor.
- (b) Draw the small-signal equivalent circuit of the entire amplifier and give the values of all its components.
- (c) Find $R_{\rm in1}$ and $v_{b1}/v_{\rm sig}$ for $R_{\rm sig} = 5 \text{ k}\Omega$
- (d) Find R_{in2} and v_{b2}/v_{b1} .
- (e) For $R_L = 2 k\Omega$, find v_o/v_{b2} .
- (f) Find the overall voltage gain v_o/v_{sig} .

10/9/2019

For the given circuit, using a 3-V power supply,

- a) and assuming $R_{b2} = \infty$, design R_c and R_{b1} to provide $I_c = 3mA$ and $V_c = V_{cc}/2$ for $\beta = 90$.
- b) Find V_c and I_c for $\beta = \infty$.
- c) Re design R_{c} , R_{b1} and R_{b2} for β =90 and using a current through R_{b2} equal to the base current.
- d) Find V_c and I_c for $\beta = \infty$.

10/9/2019

For the given circuit, assuming all transistors to be identical with β infinite,

- a) derive an expression for the output current I_0 , and show that by selecting $R_1 = R_2$ and keeping the current in each junction the same, the current I_0 will be $I_0 = V_{CC}/(2R_E)$
- b) What must be the relationship of R_E to R_1 and R_2 be?
- c) For V_{cc} =10V and V_{BE} =0.7V, design the circuit to obtain an output current of 0.5mA.
- d) What is the lowest voltage that can be applied to the collector of Q_3 ?

10/9/2019

Assuming β =infinite, design the given circuit so that the bias currents in Q_1 , Q_2 , and Q_3 are 1mA, 1mA, and 2mA, respectively, and V_3 =0, V_5 =-2V, and V_7 =1V.

