Electronics I

Last Lecture \rightarrow BJT Single Stage Amps

Common Emitter - CE

Common Collector - CC

Common Base - CB
Single Transistor
Bipolar Amplifier

Common-Emmitter CE

$$
\cong-\frac{g_{m}}{1+g_{m} Z_{e}} \cdot R_{o} / / Z_{c}
$$

$$
\cong+\frac{g_{m}}{1+g_{m} Z_{e}} \cdot Z_{e}
$$

$$
=+g_{m} \cdot R_{o} / / Z_{c}
$$

Input Resistance

Output Resistance
R_{0}

$=r_{\pi}\left(1+g_{m} Z_{e}\right)$	$=r_{\pi}\left(1+g_{m} Z_{e}\right)$
$=r_{o}\left(1+g_{m} Z_{e}\right)$	$\cong \frac{1}{g_{m}}+\frac{Z_{b}}{\beta_{o}+1}$

$\cong \frac{1}{g_{m}}$
$=r_{o}\left[1+g_{m}\left(Z_{i} / / Z_{e}\right)\right]$

Electronics I

Problem 6.154

For the given circuit, assume $\beta=100$ and $V_{B E}=0.7 \mathrm{~V}$.
a) Find the dc emitter currents and the small signal parameters.
b) Determine the overall voltage gain $v_{o} / v_{\text {sig }}$ and the input resistance $R_{i n}$.
c) Repeat b) for the case when capacitor C_{B} is open-circuited. Compare the results with those obtained in b).

Problem 6.147

*6.147 The amplifier of Fig. P6.147 consists of two identical common-emitter amplifiers connected in cascade. Observe that the input resistance of the second stage, $R_{\mathrm{in} 2}$, constitutes the load resistance of the first stage.
(a) For $V_{C C}=9 \mathrm{~V}, R_{1}=100 \mathrm{k} \Omega R_{2}=47 \mathrm{k} \Omega, R_{E}=3.9 \mathrm{k} \Omega, R_{C}=$ $6.8 \mathrm{k} \Omega$ and $\beta=100$, determine the dc collector current and dc collector voltage of each transistor.
(b) Draw the small-signal equivalent circuit of the entire amplifier and give the values of all its components.
(c) Find $R_{\mathrm{in} 1}$ and $v_{b 1} / v_{\text {sig }}$ for $R_{\text {sig }}=5 \mathrm{k} \Omega$
(d) Find $R_{\mathrm{in} 2}$ and $v_{b 2} / v_{b 1}$.
(e) For $R_{L}=2 \mathrm{k} \Omega$, find $v_{o} / v_{b 2}$.
(f) Find the overall voltage gain $v_{o} / v_{\text {sig }}$.

Electronics I

Problem 6.136

For the given circuit, using a 3-V power supply,

a) and assuming $R_{b 2}=\infty$, design R_{c} and $R_{b 1}$ to provide $I_{c}=3 m A$ and $V_{c}=V_{c c} / 2$ for $\beta=90$.
b) Find V_{c} and I_{c} for $\beta=\infty$.
c) $R e$ design $R_{c}, R_{b 1}$ and $R_{b 2}$ for $\beta=90$ and using a current through $R_{b 2}$ equal to the base current.
d) Find V_{c} and I_{c} for $\beta=\infty$.

Electronics I

Problem 6.140

For the given circuit, assuming all transistors to be identical with β infinite,
a) derive an expression for the output current I_{0}, and show that by selecting $R_{1}=R_{2}$ and keeping the current in each junction the same, the current I_{0} will be $I_{0}=V_{C C} /\left(2 R_{E}\right)$
b) What must be the relationship of R_{E} to R_{1} and R_{2} be?
c) For $V_{c c}=10 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{BE}}=0.7 \mathrm{~V}$, design the circuit to obtain an output current of 0.5 mA .
d) What is the lowest voltage that can be applied to the collector of Q_{3} ?

Electronics I

Problem 6.68

Assuming $\beta=$ infinite, design the given circuit so that the bias currents in Q_{1}, Q_{2}, and Q_{3} are $1 \mathrm{~mA}, 1 \mathrm{~mA}$, and 2 mA , respectively, and $\mathrm{V}_{3}=0, \mathrm{~V}_{5}=-2 \mathrm{~V}$, and $\mathrm{V}_{7}=1 \mathrm{~V}$.

