
Last Lecture -> CMOS Transistor

nMOS pMOS gate gate bulk drain source drain substrate source n+ p^+ p^+ n⁺ n⁺ p^+ n-well p⁺-substrate

Last Lecture — Strong Inversion

nMOS Large Signal Model

10/28/2019

• Strong Inversion – Ohmic

$$I_D = \mu C_{ox} \frac{W}{L} \left[(V_{GS} - V_{th}) V_{DS} - \frac{V_{DS}^2}{2} \right] \qquad \qquad V_{GS} > V_{th} \\ V_{DS} < V_{OV}$$

• Strong Inversion - Saturation

$$I_D = \frac{\mu C_{ox}}{2} \frac{W}{L} (V_{GS} - V_{th})^2 (1 + \lambda V_{DS}) \qquad \qquad V_{GS} > V_{th} \\ V_{DS} > V_{OV}$$

Weak Inversion - Saturation

$$I_D = I_0 \cdot e^{\frac{V_{GS} - V_{th}}{nU_T}}$$

 V_{th} -5· U_T < V_{GS} < V_{th} -2 · U_T

Condition

MOSFET Model Parameters

 $U_t = kT/q \rightarrow thermal voltage (~25mV @ room temp.)$

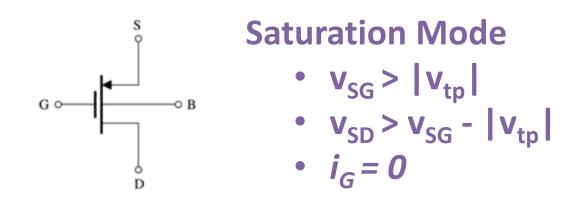
- μ $\kappa_{s} = 1/n$ $C_{ox} = \epsilon_{ox}/t_{ox}$ ϵ_{ox} t_{ox}
- → electron/hole mobility
- $\kappa_s = 1/n \rightarrow \text{subthreshold slope coefficient (unit-less)}$
- $C_{ox} = \epsilon_{ox}/t_{ox} \rightarrow$ gate oxide capacitance per unit area (F/cm²)
- $\epsilon_{ox} \rightarrow dielectric permittivity of SiO_2$
 - \rightarrow oxide thickness

 $K_n = k_n' W/L$ $k_n' = \mu C_{ox}$ γ

- $K_n = k_n' W/L \rightarrow transconductance parameter(A/V²)$
 - \rightarrow body effect coefficient (V^{1/2})
 - → channel-length modulation parameter (V⁻¹)

ν_{τ0} ν_τ φ₀

λ


- \rightarrow threshold voltage at V_{SB}=0 (V)
- → threshold voltage (V)
 - \rightarrow ≈ surface potential (V)

Weak Inversion vs Strong Inversion?

Weak Inversion	Strong Inversion
Saturation current is exponential in V _{GS}	Saturation current is square law in V _{GS}
V _{DSAT} is constant at approximately 100mV	V _{DSAT} varies linearly with gate voltage
Current flows by diffusion	Current flows mainly by drift
Charge concentrations are small	Charge concentrations are large
Currents are small	Current are large
Good for ultra-low-power operation	Good for high-power operation
Power efficiency is constant with current	Power efficiency is lower
High noise and offset	Low noise and offset
Can work on low power supply voltage	Needs higher power supply voltages
Linearity is hard to achieve	Linearity is easy to achieve
Suited for slow-and-parallel architectures	Suited for fast-and-serial architectures

pMOS Large Signal Model

10/28/2019

 $V_{ov} = V_{SG} - |V_{tp}|$

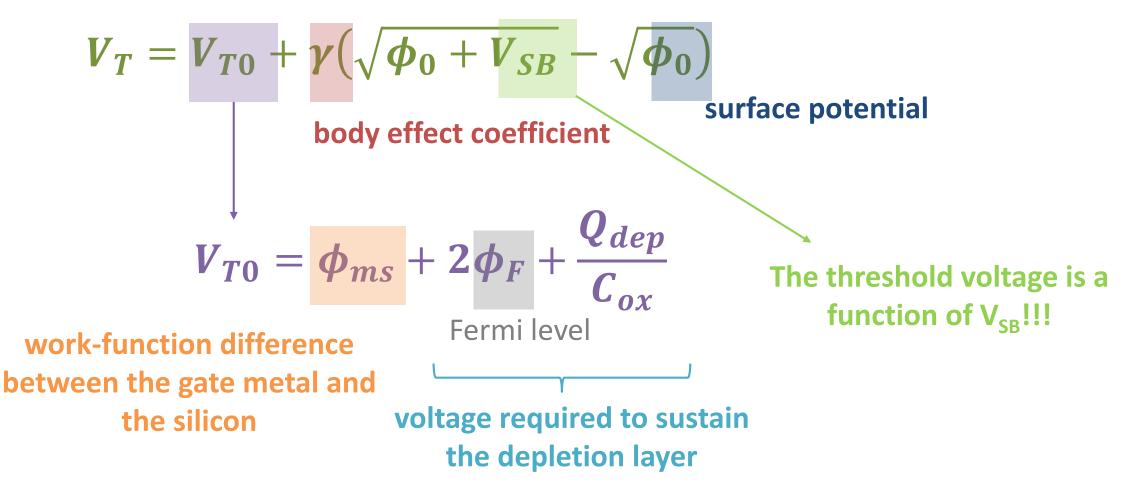
Ohmic Mode

- $\mathbf{v}_{SG} > |\mathbf{v}_{tp}|$
- $v_{SD} < v_{SG} |v_{tp}|$ • *i* - 0

 $I_{D} = \frac{1}{2} k_{p} \frac{W}{L} (V_{SG} - |V_{tp}|)^{2} (1 + \lambda V_{SD})$

$$\approx \frac{1}{2} k_p' \frac{W}{L} \left(V_{SG} - \left| V_{tp} \right| \right)^2$$

$$I_D = k_p' \frac{W}{L} \left[\left(V_{SG} - |V_{tp}| \right) (V_{SD}) - \frac{1}{2} V_{SD}^2 \right]$$
$$\approx k_p' \frac{W}{L} \left(V_{SG} - |V_{tp}| \right) \cdot V_{SD}$$


pMOS Transconductance Parameter [A/V²]

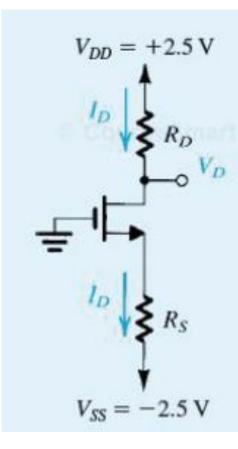
 $k_p' = \mu_p C_{ox}$

Threshold Voltage

10/28/2019

The required voltage to produce and inversion layer.

Example 5.2

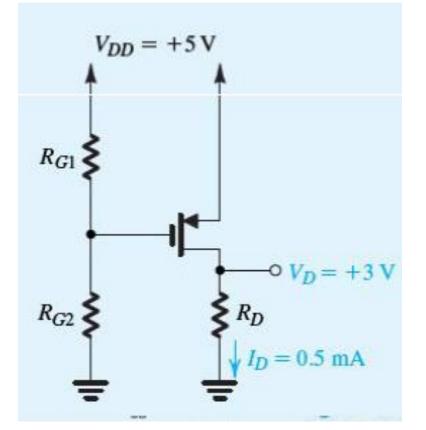

Consider an nMOS transistor fabricated in a 0.18µm process with L=0.18µm and W=2um. The process technology is specified to have C_{ox} =8.6fF/µm², µ_n=450cm²/V·s, and V_{th}=0.5V.

- a) Find V_{GS} and V_{DS} that result in the MOSFET operating at the edge of saturation with $I_D = 100 \mu A$.
- b) If V_{GS} is kept constant, find V_{DS} that results in $I_D = 50 \mu A$.
- c) To investigate the use of the MOSFET as a linear amplifier, let it be operating in saturation with
 - V_{DS} =0.3V. Find the change in i_D resulting from v_{GS} changing from 0.7V by +0.01V and by -0.01V.

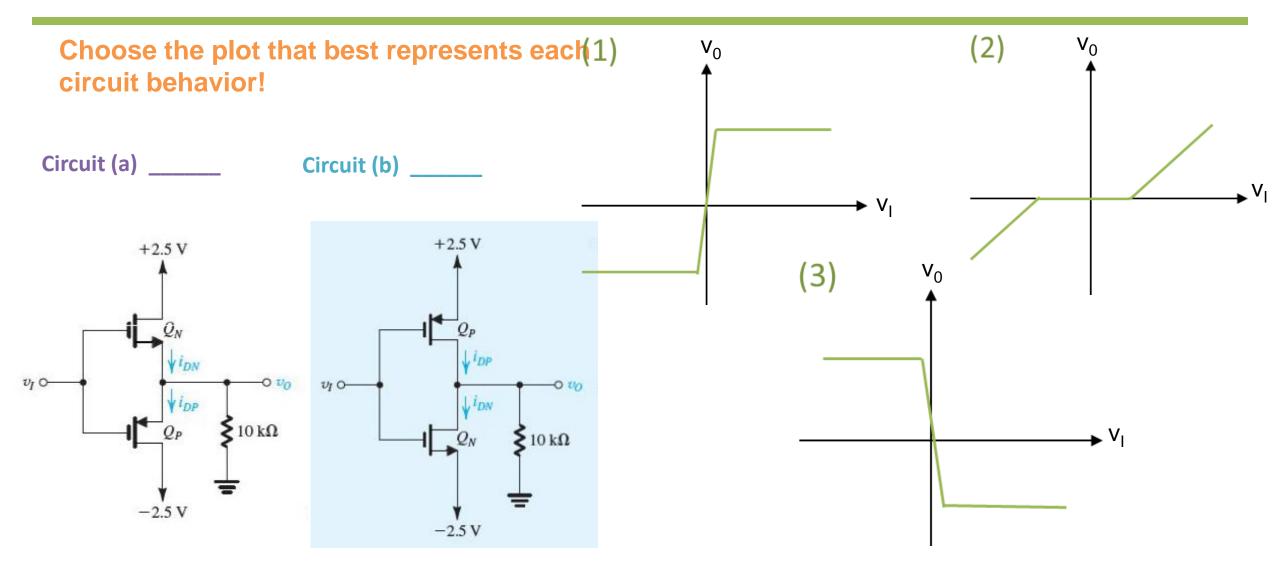
Example 5.3

10/28/2019

Assuming λ =0, design the circuit below, that is, determine the values of R_D and R_S, so that the transistor operates at I_D=0.4mA and V_D=0.5V. The NMOS transistor has V_{th}=0.7V, $\mu_n C_{ox}$ =100 μ A/V², and W/L=32.


Example 5.5

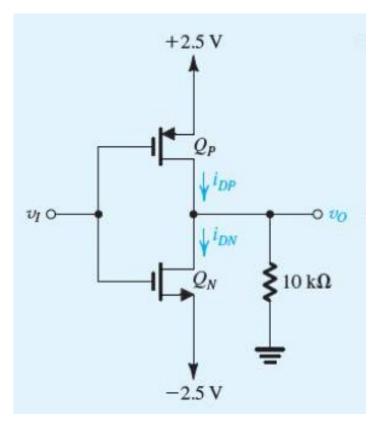
An n-channel MOSFET operating with V_{ov} =0.5V exhibits a linear resistance r_{DS} =1k Ω when v_{DS} is very small.


- a) What is the value of the device trans-conductance parameter K_n?
- b) Assuming $\lambda = 0$, what is the value of the current I_D obtained when v_{DS} is increased to 0.5V? And to 1V?
- c) Assuming an $\lambda = 0.1V^{-1}$, what is the value of the current I_D obtained when v_{DS} is increased to 0.5V? And to 1V?

Example 5.7

Assuming λ =0, design the circuit below, so that the transistor operates in saturation with I_D=0.5mA and V_D=3V. The PMOS transistor has V_{th}=-1V, K_p=1mA/V². What is the largest value that R_D can have while maintaining saturation-region operation?

MOS Behavior → Intuitively



Example 5.8

10/28/2019

14

Assuming matched NMOS and PMOS transistors with V_{thn} =- V_{thp} =1V, K_n = K_p =1mA/V² and λ =0, find the drain currents I_{Dn} and I_{Dp} , as well as the voltage v_o , for v_1 =0V, +2.5V, and -2.5V.

