Electronics I

Last Lecture — Large Signal Model

10/30/2019

• Strong Inversion – Ohmic

$$I_D = \mu C_{ox} \frac{W}{L} \left[(V_{GS} - V_{th}) V_{DS} - \frac{V_{DS}^2}{2} \right] \qquad \qquad V_{GS} > V_{th} \\ V_{DS} < V_{OV}$$

• Strong Inversion - Saturation

$$I_D = \frac{\mu C_{ox}}{2} \frac{W}{L} (V_{GS} - V_{th})^2 (1 + \lambda V_{DS}) \qquad \qquad V_{GS} > V_{th} \\ V_{DS} > V_{OV}$$

Weak Inversion - Saturation

$$I_D = I_0 \cdot e^{\frac{V_{GS} - V_{th}}{nU_T}}$$

 V_{th} -5· U_T < V_{GS} < V_{th} -2 · U_T

Condition

Electronics I

Example 5.7

Assuming λ =0, design the circuit below, so that the transistor operates in saturation with I_D=0.5mA and V_D=3V. The PMOS transistor has V_{th}=-1V, K_p=1mA/V². What is the largest value that R_D can have while maintaining saturation-region operation?

Example 5.5

An n-channel MOSFET operating with V_{ov} =0.5V exhibits a linear resistance r_{DS} =1k Ω when v_{DS} is very small.

- a) What is the value of the device trans-conductance parameter K_n?
- b) Assuming $\lambda = 0$, what is the value of the current I_D obtained when v_{DS} is increased to 0.5V? And to 1V?
- c) Assuming an $\lambda = 0.1V^{-1}$, what is the value of the current I_D obtained when v_{DS} is increased to 0.5V? And to 1V?

Electronics I

MOS Behavior → Intuitively

10/30/2019

