Last Lecture → Large Signal Model

11/4/2019

Strong Inversion – Ohmic

$$I_D = \mu C_{ox} \frac{W}{L} \left[(V_{GS} - V_{th}) V_{DS} - \frac{V_{DS}^2}{2} \right]$$

Condition

$$V_{GS} > V_{th}$$

 $V_{DS} < V_{OV}$

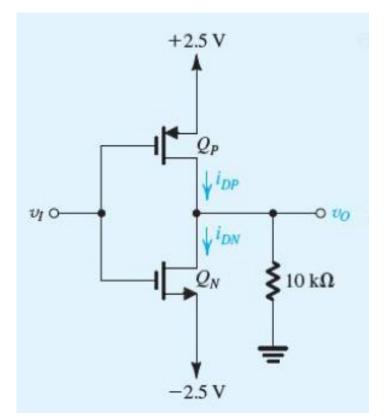
Strong Inversion - Saturation

$$I_D = \frac{\mu C_{ox}}{2} \frac{W}{L} (V_{GS} - V_{th})^2 (1 + \lambda V_{DS})$$

$$V_{GS} > V_{th}$$

 $V_{DS} > V_{OV}$

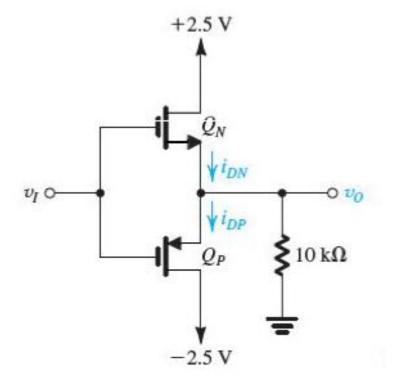
Weak Inversion - Saturation


$$I_D = I_0.e^{\frac{V_{GS} - V_{th}}{nU_T}}$$

$$V_{th}$$
-5· U_T < V_{GS} < V_{th} -2 · U_T

Example 5.8

11/4/2019


Assuming matched NMOS and PMOS transistors with V_{thn} =- V_{thp} =1V, K_n = K_p =1mA/V² and λ =0, find the drain currents I_{Dn} and I_{Dp} , as well as the voltage v_o , for v_l =0V, +2.5V, and -2.5V.

Exercise 5.15

11/4/2019

Assuming matched NMOS and PMOS transistors with $V_{thn} = -V_{thp} = 1V$, $K_n = K_p = 1 \text{mA/V}^2$ and $\lambda = 0$, find the drain currents I_{Dn} and I_{Dp} , as well as the voltage v_o , for $v_l = 0V$, +2.5V, and -2.5V.

