

11/12/2019

 V_{dd} Zd Ro **o** v_o Common Source - CS Common Drain - CD Common Gate - CD **Single Transistor MOS Amplifier Common-Source Common-Drain Common-Gate** Voltage Gain $= + \frac{g_m}{1 + g_m Z_s} \cdot Z_s$ $= -\frac{g_m}{1 + g_m Z_s} \cdot R_o / / Z_d$ $= +g_m R_o / / Z_d$ **Input Resistance** $= \infty$ $= \infty$ g_m **Output Resistance** $= r_{ds} [1 + g_m (Z_i / / Z_s)]$ $= r_{ds}(1 + g_m Z_s)$ R_o g_m

11/12/2019

Depletion-Type MOSFET

11/12/2019

- Has a physically implanted channel
 - → no need to induce a channel to conduct current!
- The channel depth and hence its conductivity can be controlled by v_{GS} in exactly the same manner as in the enhancement-type device
- The threshold voltage is negative!!!!

Problem 5.114

11/12/2019

 $O U_{a}$

 V_{DD}

 R_D

For proper operation, transistor Q_2 is required to present a 50 Ω resistance to the cable. When the cable is properly terminated, its input resistance is 50 Ω . What must g_{m2} be? What is the ampliturde of the current pulses in the drain of Q_1 ? What value of R_D is required to provide 1 V pulses at the drain of Q_2 ?

Problem 5.124

11/12/2019

Assume that each transitor is sized and biased so that $g_m = 1 \text{ mA/V}$ and $r_o = 100 \text{ k}\Omega$. For $R_L = 10 \text{ k}\Omega$, $R_1 = 500 \text{ k}\Omega$, and $R_2 = 1 \text{ M}\Omega$, find the overall gain v_o/v_{sig} and the input resistance R_{in} .

