Last Lecture \rightarrow Small Signal Parameters

Electronics I

Last Lecture \rightarrow Small Signal Parameters

Common Source - CS

Common Drain - CD

Common Gate - CD

Single Transistor MoS Amplifier	Common-Source	Common-Drain	Common-Gate
Voltage Gain	$=-\frac{g_{m}}{1+g_{m} Z_{s}} \cdot R_{o} / / Z_{d}$	$=+\frac{g_{m}}{1+g_{m} Z_{s}} \cdot Z_{s}$	$=+g_{m} R_{o} / / Z_{d}$
$A_{v}=\frac{v_{o}}{v_{i}}$	$=\infty$	$=\infty$	$=\frac{1}{g_{m}}$
Input Resistance	$=\infty$	$=\frac{1}{g_{m}}$	$=r_{d s}\left[1+g_{m}\left(Z_{i} / / Z_{s}\right)\right]$
R_{i} Output Resistance R_{0}	$=r_{d s}\left(1+g_{m} Z_{s}\right)$		

Depletion-Type MOSFET

- Has a physically implanted channel
\rightarrow no need to induce a channel to conduct current!
- The channel depth and hence its conductivity can be controlled by v_{GS} in exactly the same manner as in the enhancement-type device
- The threshold voltage is negative!!!!

Problem 5.114

For proper operation, transistor Q_{2} is required to present a 50Ω resistance to the cable. When the cable is properly terminated, its input resistance is 50Ω. What must $g_{m 2}$ be? What is the ampliturde of the current pulses in the drain of Q_{1} ? What value of R_{D} is required to provide 1 V pulses at the drain of Q_{2} ?

Electronics I

Problem 5.124

Assume that each transitor is sized and biased so that $g_{m}=1 \mathrm{~mA} / \mathrm{V}$ and $r_{0}=100 \mathrm{k} \Omega$. For $R_{L}=10 \mathrm{k} \Omega, R_{1}=500 \mathrm{k} \Omega$, and $R_{2}=1 \mathrm{M} \Omega$, find the overall gain $v_{0} / v_{\text {sig }}$ and the input resistance $R_{\text {in }}$.

