Last Lecture \rightarrow Chapter 1.1

Concepts revisited...

- electronics
- signal representation
- basic circuit analysis

- maximum power transfer

- Power

$$
P_{L}=V_{0} \cdot I_{L}=\frac{R_{L}}{\left(R_{L}+R_{S}\right)^{2}} V_{S}^{2}
$$

- Efficiency

$$
\eta=\frac{P_{L}}{P_{\text {supply }}}=\frac{R_{L}}{R_{L}+R_{S}}
$$

- Maximum Power

$$
\left.\frac{\partial P_{L}}{\partial R_{L}}=0 \quad \right\rvert\, \quad @ R_{L}=R_{S}
$$

Frequency Spectrum \rightarrow Chapter 1.2

... defines a time-domain signal in terms of the strength of harmonic components
Fourier Series \rightarrow an expression of a periodic function as the sum of an infinite number of sinusoids whose frequencies are harmonically related

Fourier Series Representation of $f(x)$

Analog \& Digital Signals \rightarrow Chapter 1.3

- analog signal - is continuous with respect to both value and time
- discrete-time signal - is continuous with respect to value but sampled at discrete points in time
- digital signal - is quantized (applied to values) as well as sampled at discrete points in time
analog signal
discrete-time signal
digital signal

Analog \& Digital Signals

Are digital and binary synonymous?

No. The binary number system (base ${ }_{2}$) is one way to represent digital signals.

$$
\begin{aligned}
y=\underbrace{b_{0}}_{\text {LSB }} 2^{0} & +b_{1} 2^{1}+b_{2} 2^{2}+\ldots \\
& \ldots+b_{3} 2^{3}+\ldots \underbrace{b_{n-1}}_{M S B} 2^{n-1}
\end{aligned}
$$

Binary Signal: a digital signal with only 2 distinguishable levels!

Amplifiers \rightarrow Chapter 1.4

Why is signal amplification needed?

Because many transducers yield output at low power levels (mW)

- Voltage Amplifier - is used to boost voltage levels for increased resolution
- Power Amplifier - is used to boost current levels for increased "intensity"
- Linearity - is property of an amplifier which ensures a signal is not "altered" from amplification
- Distortion - is any unintended change in output

Amplifier Circuit Symbol

- Gain in decibels...
voltage gain in decibels $=20 \log \left|A_{v}\right| d B$ current gain in decibels $=20 \log \left|A_{i}\right| d B$ power gain in decibels $=10 \log \left(A_{p}\right) d B$

What is one main difference between an

lamplifier and a transformer?

An amplifier may be used to boost power delivery!
$\operatorname{power} \operatorname{gain}\left(A_{p}\right)=\frac{\text { load } \operatorname{power}\left(P_{L}\right)}{\text { input power }\left(P_{l}\right)}=\frac{v_{o} i_{o}}{v_{i} i_{i}}$

Amplifiers Power \& Saturation

Exercise 1.11

An amplifier operating from a single $15-\mathrm{V}$ supply provides a 12-V peak-to-peak sine wave signal t a 1-k load and draws negligible input current from the signal source. The dc current drawn from the $15-\mathrm{V}$ supply is 8 mA . What is the power dissipated in the amplifier, and what is the amplifier efficiency?

- Conservation of power - the input power plus the power drawn from the supplies is equal to the output power
- Efficiency - the ratio of the output power to the total power
- Limited Linear Range - input voltage range over which the amplifier is linear
- Saturation Voltage - maximum output voltage

Amplifiers Power \& Saturation

Linear Range

- Conservation of power $\longrightarrow P_{V_{I}}+P_{V_{C C}}+P_{V_{E E}}=P_{L}+P_{a m p}$
- Efficiency
- Limited Linear Range

$$
\eta=\frac{\boldsymbol{P}_{L}}{\boldsymbol{P}_{i n}}=\frac{\boldsymbol{P}_{L}}{\boldsymbol{P}_{V_{I}}+\boldsymbol{P}_{V_{C C}}+\boldsymbol{P}_{V_{E E}}}
$$

- Saturation Voltage

Amplifier Circuit Model \rightarrow Chapter 1.5

... is the description of the amplifier's terminal behavior, neglecting internal operation / transistor design

