Last Lecture \rightarrow Chapter 1.2-1.4

Concepts revisited...

- Frequency spectrum
- Fourier series
- Amplifier basics

Voltage Gain

$$
V_{\text {out }}(t)=A_{V} \cdot V_{\text {in }}(t)
$$

- Limited Linear Range
- Saturation Voltage
- Conservation of power \qquad $P_{V_{I}}+P_{V_{C C}}+P_{V_{E E}}=P_{L}+P_{a m p}$
- Efficiency

$\eta=\frac{\boldsymbol{P}_{L}}{\boldsymbol{P}_{\text {in }}}=\frac{\boldsymbol{P}_{L}}{\boldsymbol{P}_{V_{I}}+\boldsymbol{P}_{V_{C C}}+\boldsymbol{P}_{V_{E E}}}$

Amplifier Circuit Model \rightarrow Chapter 1.5

... is the description of the amplifier's terminal behavior, neglecting internal operation / transistor design
model of amplifier input terminals

Voltage Gain

$$
\mathbf{A}_{\mathrm{V}}=\frac{\mathbf{V}_{0}}{\mathbf{V}_{\mathrm{S}}}=\underbrace{\left[\frac{\mathbf{V}_{\mathrm{i}}}{\mathbf{V}_{\mathrm{s}}}\right]}_{\mathrm{A}_{\mathrm{v} 1}} \underbrace{\left[\frac{\mathbf{V}_{0}}{\mathbf{V}_{\mathrm{i}}}\right]}_{A_{\mathrm{v} 2}}
$$

Amplifier Circuit Model

Cascade Amplifiers

In real life, an amplifier is not ideal an will not have infinite input impedance or zero output impedance...
... cascading of amplifiers, however, may be used to emphasize desirable characteristics.

- first amplifier \rightarrow high R_{i}, medium R_{o}
- last amplifier \rightarrow medium R_{i}, low R_{o}
- aggregate \rightarrow high R_{i}, low R_{o}

Example 1.3

Examine system of cascaded amplifiers....
a) What is the overall voltage gain?
b) What is the overall current gain?
c) What is the overall power gain?

Different Types of Amplifiers

Problem D1.49

A designer has available voltage amplifiers with an input resistance of $10 \mathrm{k} \Omega$, an output resistance of $2 \mathrm{k} \Omega$, and an open-circuit voltage gain of $10 \mathrm{~V} / \mathrm{V}$. The signal source has a $10 \mathrm{k} \Omega$ resistance and provides a $10-\mathrm{mV}$ rms signal, and it is required to provide a signal of at least $2 \mathrm{~V}_{\mathrm{rms}}$ to a $2 \mathrm{k} \Omega$ load. How many amplifier stages are required? What is the output voltage actually obtained?

