Last Lecture \rightarrow Chapter 1.5

Concepts learned...

- voltage amplifier circuit model
 - ✓ ideal
 - ✓ non-ideal
- circuit analysis
- other types of amplifiers models
 - ✓ current amp.
 - ✓ trans-conductance amp.
 - ✓ trans-resistance amp.

Gain $\rightarrow A_v [V/V]$ $\begin{array}{c} R_i = \infty \\ R_0 = 0 \end{array}$

Gain \rightarrow A_i [A/A] $\begin{array}{c} R_i = 0 \\ R_0 = \infty \end{array}$

Current Amplifier

Trans-conductance Amplifier

Gain
$$\rightarrow$$
 G_m [A/V] $\frac{R_i = \infty}{R_0 = \infty}$

Trans-resistance Amplifier

$$\label{eq:Gain} \begin{tabular}{l} \mbox{Gain} \rightarrow \mbox{R}_m \mbox{[V/A]} & \mbox{R}_i = \mbox{0} \\ \mbox{R}_0 = \mbox{0} \end{tabular}$$

Last Lecture \rightarrow Problem D1.49

A designer has available voltage amplifiers with an input resistance of $10k\Omega$, an output resistance of $2k\Omega$, and an open-circuit voltage gain of 10V/V. The signal source has a $10k\Omega$ resistance and provides a 10-mV_{rms} signal, and it is required to provide a signal of at least $2V_{rms}$ to a $2k\Omega$ load. How many amplifier stages are required? What is the output voltage actually obtained?

1/25/2017

Input / Output Impedance of a Circuit

- How can one <u>calculate input resistance</u> from terminal behavior?
 - 1. place a test source V_x at the input terminals
 - 2. observe v_x and i_x
 - 3. calculate via $R_{in} = v_x / i_x$

- How can one <u>calculate output resistance</u> from terminal behavior?
 - 1. place a test source V_v at the output terminals
 - 2. turn of the input source (V_s =short!, I_s =open!)

3. observe
$$v_y$$
 and i_y

4. calculate via
$$R_{out} = v_y / i_y$$

Example 1.4

For the following circuit derive an expression for the voltage gain v_o/v_s , and evaluate its magnitude for the case $R_s=5k\Omega$, $r_{\pi}=2.5k\Omega$, $g_m=40mA/V$, $r_o=100k\Omega$, and $R_L=5k\Omega$. What would be the gain value if the effect of r_o were neglected? Calculate the value for the impedance seen by the source and at the output terminals.

$$A_{v} = \frac{v_{0}}{v_{s}} = \left[\frac{v_{0}}{v_{be}}\right] \left[\frac{v_{be}}{v_{s}}\right] = \left[\frac{r_{\pi}}{r_{\pi} + R_{s}}\right] [g_{m}r_{0}||R_{L}] = [0.33][190] = 63 \text{ V/V}$$

for $r_{0} = 0 \quad \rightarrow A_{v} = [0.33][200] = 66 \text{ V/V}$

$$R_{in} = rac{V_X}{I_x} = R_s + r_\pi = 7.5$$
 kΩ
 $R_{out} = rac{V_y}{I_y} = r_0 ||R_L = 4.76$ kΩ

Problem

For the circuit provided below find the expression for the

- a) Voltage gain V₀/V_s
- b) Output resistance R_{out} (assume the source exhibits a series resistance R_s not shown)
- c) Input resistance R_{in}

$$R_{out} = \frac{V_y}{I_y} = R_L$$

$$A_{v} = \frac{V_{0}}{V_{s}} = g_{m}R_{L}$$

$$R_{in} = \frac{V_X}{I_x} = \frac{1}{g_m} \left[\frac{1}{1 + \frac{1}{g_m r_\pi}} \right]$$

for
$$g_m r_\pi \gg 1 \rightarrow R_{in} = \frac{V_X}{I_x} = \frac{1}{g_m}$$