Last Lecture \rightarrow Chapter 1.5

$$
\begin{array}{ll}
\text { Gain } \rightarrow A_{v}[V / V] & \begin{array}{l}
\mathbf{R}_{\mathbf{i}}=\propto \\
\mathbf{R}_{0}=0
\end{array}
\end{array}
$$

Voltage Amplifier

Trans-conductance Amplifier

$$
\begin{array}{ll}
\text { Gain } \rightarrow G_{m}[A / V] & \begin{array}{l}
\mathbf{R}_{i}=\propto \\
\mathbf{R}_{0}=\propto
\end{array}
\end{array}
$$

$$
\begin{array}{ll}
\text { Gain } \rightarrow A_{i}[A / A] & \begin{array}{l}
R_{i}=0 \\
R_{0}=\propto
\end{array}
\end{array}
$$

Current Amplifier

Trans-resistance Amplifier

$$
\text { Gain } \rightarrow R_{m}[V / A] \begin{aligned}
& R_{i}=0 \\
& R_{0}=0
\end{aligned}
$$

Last Lecture \rightarrow Problem D1. 49

A designer has available voltage amplifiers with an input resistance of $10 \mathrm{k} \Omega$, an output resistance of $2 \mathrm{k} \Omega$, and an open-circuit voltage gain of $10 \mathrm{~V} / \mathrm{V}$. The signal source has a $10 \mathrm{k} \Omega$ resistance and provides a $10-\mathrm{mV}$ rms signal, and it is required to provide a signal of at least $2 \mathrm{~V}_{\mathrm{rms}}$ to a $2 \mathrm{k} \Omega$ load. How many amplifier stages are required? What is the output voltage actually obtained?

Input / Output Impedance of a Circuit

- How can one calculate input resistance from terminal behavior?

1. place a test source \mathbf{V}_{x} at the input terminals
2. observe v_{x} and i_{x}
3. calculate via $R_{\text {in }}=v_{x} / i_{x}$

Example 1.4

For the following circuit derive an expression for the voltage gain v_{0} / v_{s}, and evaluate its magnitude for the case $R_{s}=5 \mathrm{k} \Omega, \mathrm{r}_{\mathrm{r}}=2.5 \mathrm{k} \Omega, \mathrm{g}_{\mathrm{m}}=40 \mathrm{~mA} / \mathrm{V}, \mathrm{r}_{\mathrm{o}}=100 \mathrm{k} \Omega$, and $R_{L}=5 \mathrm{k} \Omega$. What would be the gain value if the effect of r_{0} were neglected? Calculate the value for the impedance seen by the source and at the output terminals.

$$
\begin{aligned}
A_{v}=\frac{v_{0}}{v_{s}}=\left[\frac{v_{0}}{v_{b e}}\right]\left[\frac{v_{b e}}{v_{s}}\right]=\left[\frac{r_{\pi}}{r_{\pi}+R_{s}}\right]\left[g_{m} r_{0} \| R_{L}\right] & =[0.33][190]=63 \mathrm{~V} / \mathrm{V} \\
\text { for } r_{0}=0 \rightarrow A_{v} & =[0.33][200]=66 \mathrm{~V} / \mathrm{V}
\end{aligned}
$$

$$
\begin{aligned}
& R_{\text {in }}=\frac{V_{X}}{I_{x}}=R_{s}+r_{\pi}=7.5 \mathrm{k} \Omega \\
& \boldsymbol{R}_{\text {out }}=\frac{V_{y}}{I_{y}}=r_{0} \| R_{L}=4.76 \mathrm{k} \Omega
\end{aligned}
$$

Problem

For the circuit provided below find the expression for the
a) Voltage gain $\mathrm{V}_{0} / \mathrm{V}_{\mathrm{s}}$
b) Output resistance $R_{\text {out }}$ (assume the source exhibits a series resistance R_{s} not shown)
c) Input resistance $R_{\text {in }}$

$$
R_{o u t}=\frac{V_{y}}{I_{y}}=R_{L}
$$

$$
R_{i n}=\frac{V_{X}}{I_{x}}=\frac{1}{g_{m}}\left[\frac{1}{1+\frac{1}{g_{m} r_{\pi}}}\right]
$$

$$
A_{v}=\frac{V_{\mathbf{0}}}{V_{s}}=g_{m} R_{L}
$$

$$
\text { for } g_{m} r_{\pi} \gg \mathbb{1} \rightarrow \boldsymbol{R}_{\text {in }}=\frac{V_{X}}{I_{x}}=\frac{1}{g_{m}}
$$

