Last Lecture — Input / Output Impedance of a Circuit

- How can one <u>calculate input resistance</u> from terminal behavior?
 - **1.** place a test source V_x at the input terminals
 - **2.** observe v_x and i_x
 - 3. calculate via $R_{in} = v_x / i_x$

- How can one <u>calculate output resistance</u> from terminal behavior?
 - 1. place a test source V_v at the output terminals
 - 2. turn of the input source (V_s =short!, I_s =open!)
 - 3. observe v_v and i_v

4. calculate via
$$R_{out} = v_y / i_y$$

Atom – Bohr Model \rightarrow Chp. #3

... electrons move in orbits around the nucleus, which consists of protons and neutrons.

- Elements in the periodic table are grouped according to the number of valence electrons.
- Valence electron an electron that participates in the formation of chemical bonds.

Covalent Bonds

- As silicon atoms come into proximity to each other , the valence electrons interact to from a crystal
- The valence electrons are shared between atoms, forming what are called covalent bonds, a stable balance of attractive and repulsive forces between atoms.

Intrinsic Semiconductor: is a single-crystal semiconductor with no other types of atoms within the crystal.

Silicon Crystal

@ low temp.

- All covalent bonds are intact
- No electrons are available for conduction
- Conductivity is zero

- Some covalent bonds break
- Some electrons will become available for conduction
- **Conductivity** is greater than zero

Hole – Electron Pair Creation

The process of freeing electrons, creating holes, and filling them facilitates current flow...

Electron Current Si Movement of free electrons in • ----the conduction band --------(5) A valence electron moves (3) A valence electron moves A free electron into 4th hole and leaves into 2nd hole and leaves leaves hole in a 5th hole. a 3rd hole. valence shell. (4) A valence electron moves (6) A valence electron moves (2) A valence electron moves into 5th hole and leaves into 3rd hole and leaves into 1st hole and leaves a 6th hole, a 4th hole. a 2nd hole,-ULEO Hole Current Si Si Si

When a valence electron moves left to right to fill a hole while leaving another hole behind, the hole has effectively moved from right to left. Gray arrows indicate effective movement of a hole.

6 -- Si O- Si -- Si -- Si O Tune - Si -- Si -- Si O- Si -- Si -II (C - Si O - Si - - Si - - Si O - Si -

Movement of electrons in the valence band

Silicon Crystal - Charge Concentration

- concentration of free electrons \rightarrow **n**
- concentration of free holes $\rightarrow p$

$$n = p = n_i$$

 $np = n_i^2$

number of free electrons and holes in a unit volume (cm³) of intrinsic silicon at a given temperature

$$n_i = BT^{3/2} e^{-E_g/2kT}$$

- material-dependent parameter \rightarrow B
- bandgap energy $\rightarrow E_g$
- Boltzmann's constant $\rightarrow k$

Extrinsic Semiconductors

Doping: addition of impurities to the intrinsic semi-conductive material. Increases the number of current carriers.

N -Type Semiconductor

- Antimony (Sb) 5 Valence Electrons
- n-type: electrons >> holes
 - Majority carriers electrons
 - Minority carriers holes

P -Type Semiconductor

- Boron (B) 3 Valence Electrons
- p-type: holes >> electrons
 - Majority carriers holes
 - Minority carriers electrons

1/31/2017

N -Type Semiconductor

- concentration of <u>donor</u> atoms $\rightarrow N_D$
- concentration of free electrons in the n-type silicon \rightarrow ${\rm n_n} \simeq {\rm N_D}$

 $\therefore n_p \simeq \frac{n_i^2}{N_A}$

Si

В

Si

P -Type Semiconductor

- concentration of <u>acceptor</u> atoms $\rightarrow N_A$
- concentration of holes in the p-type silicon $\rightarrow {\rm p_p} \simeq {\rm N_A}$

Exercise 3.3:

For silicon crystal doped with boron, what must N_A be if at T=300K the electron concentration drops below the intrinsic level by a factor of 10⁶?

 $B=7.3x10^{15} \text{ cm}^{-3}\text{K}^{-3/2}, E_q=1.12 \text{ eV}, k=8.62x10^{-5}\text{eV/K}$

Hole from B atom

Si

A piece of n-type or ptype silicon is electrically neutral; the charge of the majority free carriers are neutralized by the bound charges associated with the impurity atoms.

Current Flow in Semiconductors

... there are two distinctly different mechanisms for the movement of charge carriers and hence for current flow in semiconductors: *drift* and *diffusion*

Drift Current

When and electrical field E is established in a semiconductor crystal...

- Holes are accelerated in the direction of E!
- Free electrons are accelerated in the direction opposite of E!

Diffusion Current

When the density of charge carrier in a piece of semiconductor is not uniform...

• Charge carriers will diffuse from the region of high concentration to the region of low concentration!

Electronics I

 D_p = diffusion constant of holes (12cm²/s for silicon), D_p = diffusion constant of electrons (35cm²/s for silicon), $\mathbf{p}(x)$ = hole concentration at point x, $\mathbf{n}(x)$ = free electron concentration at point x,

 $d\mathbf{p}/dx =$ gradient of hole concentration, $d\mathbf{n}/dx =$ gradient of free electron concentration