

- Antimony (Sb) 5 Valence Electrons
- n-type: electrons >> holes
 - Majority carriers electrons
 - Minority carriers holes

- Boron (B) 3 Valence Electrons
- p-type: holes >> electrons
 - Majority carriers holes
 - Minority carriers electrons

Last Lecture → Current Flow

... there are two distinctly different mechanisms for the movement of charge carriers and hence for current flow in semiconductors: *drift* and *diffusion*

Drift Current

When and electrical field E is established in a semiconductor crystal...

- Holes are accelerated in the direction of E!
- Free electrons are accelerated in the direction opposite of E!

• Ohm's Law [A/cm²]

Diffusion Current

When the density of charge carrier in a piece of semiconductor is not uniform...

• Charge carriers will diffuse from the region of high concentration to the region of low concentration!

Problem 3.6

A young designer, aiming to develop intuition concerning conducting paths within an integrated circuit, examines the end-to-end resistance of a connecting bar 10µm long, 3µm wide, and 1µm thick, made of various materials. The designer considers:

- a) intrinsic silicon
- b) n-doped silicon with $N_D = 10^{16}/cm^3$
- c) n-doped silicon with $N_D = 10^{18} / \text{cm}^3$
- d) p-doped silicon with $N_A = 10^{16} / \text{cm}^3$
- e) Aluminum with resistivity of 2.8 $\mu\Omega$ ·cm.

Find the resistance in each case. For intrinsic silicon use the data in Table 3.1. For doped silicon, assume $\mu_n = 2.5 \cdot \mu_p = 1200 \text{ cm}^2/\text{V} \cdot \text{s}$. (Recall that $R = \rho L/A$)

The Equilibrium PN Junction $\rightarrow N_A > N_D$

- The depletion region will extend further in to region with "less" doping.
- However, the "number" of uncovered charges is the same.

Reverse-Biased PN Junction

- The transition current essentially ceases
- A extremely small current exists do minority carries produced thermally

Forward-Biased PN Junction

Qualitative PN Junction Operation

<u>Reverse biased case $(\uparrow V_R)$ </u>

- barrier voltage increases ($\uparrow V_0$)
 - Diffusion decreases... : $\downarrow I_{D}$
 - @ V_R > 1V, I_D ≈ 0A
- the drift current I_s is unaffected
- $-I_{pn} \approx I_{s}$ (small non-zero current)

Forward biased case case $(\uparrow V_F)$

- barrier voltage decreases ($\downarrow V_0$)
 - Diffusion increases ... $\therefore \uparrow I_D$
- the drift current *I_s* is unaffected
- $-I_{pn} \approx I_{D} I_{S}$ (a significant current)

saturation current (I_s) – is the maximum reverse current which will flow through *pn*-junction (typical value is $10^{-18}A$)

Problem 3.13

If, for a particular junction, the acceptor concentration is 10^{16} /cm³ and the donor concentration is 10^{15} /cm³, find the junction built-in voltage. Assume $n_i = 1.5 \times 10^{10}$ /cm³. Also, find the width of the depletion region (W) and its extent in each of the p and n regions when the junction terminals are left open. Calculate the magnitude of the charge stored on either side of the junction. Assume that the junction area is $400\mu m^2$.

 $i \approx -I_S$