Last Lecture \rightarrow PN Junction

- Reversed Biased $\rightarrow V_{d}<0$

- Forward Biased $\rightarrow v_{d}>V_{0}$

Terminal Characteristics of Diodes

Cut-in Voltage
$\approx 0.5 \mathrm{~V}$

- $\mathrm{I}_{\mathrm{S}} \rightarrow$ saturation current
- $\mathrm{V}_{\mathrm{T}} \rightarrow$ thermal voltage

Characteristic Regions

- Forward Bias: v>0
- Reverse Bias: $\mathbf{v}<0$
- Breakdown: $v \ll 0$

Fully Conducting
Region

$$
\begin{aligned}
i= & -I_{S} e^{-|v| / V_{T}} \quad 0.6 \mathrm{~V}<\mathrm{V}<0.8 \mathrm{~V} \\
& i \approx-I_{S}
\end{aligned}
$$

Diode Models

Your simulation results are as good as your model!!!!

Exponential Model

$$
\begin{aligned}
& \text { for } v<0.5 \rightarrow I_{D} \approx 0 \\
& \text { for } v>0.5 \rightarrow I_{D} \approx I_{S} e^{v_{D} / V_{T}}
\end{aligned}
$$

Problem 4.23

The circuit provided below utilizes three identical diodes having $I_{s}=10^{-16} \mathrm{~A}$. Find the value of the current I required to obtain an output voltage $\mathrm{V}_{0}=2.4 \mathrm{~V}$. If a current of 1 mA is drawn away from the output terminal by a load, what is the change in the output voltage.

Diode Models

Solving Circuits with Diodes

1. Choose a model for the diode
2. Make an educated guess of the region of operation of the diode
3. Solve the circuit via mesh / nodal analysis
4. Verify if the condition of the region of operation are satisfied!

For the given circuits, determine the current flowing through the resistor.

(a)

(b)

Example 4.2

(b)

Diode Logic Gates

Diodes together with resistors can be used to implement logic functions...

(a)

(b)

A Simple Application

\rightarrow The Rectifier

Example 4.1

For the following circuit, assuming v_{s} is a sinusoid with $24-\mathrm{V}$ peak amplitude find
a) the fraction of each cycle during which the diode conducts
b) the peak value of the diode current
c) The maximum reverse-bias voltage that appears across the diode

