

Problem D 4.11

Design the given circuit to provide an output voltage of 2.4V. Assume that the diodes available have 0.7V drop at 1mA.

Small-Signal Model

- Diode y modeled as a variable resistor
- Its value is defined via linearization of exponential model
- Around bias point defined by constant voltage drop model

The total instantaneous circuit is divided into steady-state and time varying components, which may be analyzed separately and solved via algebra.

- 1) In steady-state, diode represented as CVDM.
- 2) In time-varying, diode represented as resistor.

Problem D 4.56

A particular design of a voltage regulator is shown below. Diodes D_1 and D_2 are 10-mA units; that is, each has a voltage drop of 0.7V at a current of 10mA. Use the diode exponential model and iterative analysis to answer the following questions:

- a) What is the regulator output voltage V_0 with the 150 Ω load connected?
- b) With the load connected, to what value can the 5V supply be lowered while maintaining the loaded output voltage within 0.1V / 0.01V / 0.001V of its nominal value?

** for part b) use both the large signal model (exponential) and the small signal

ΔV ₀	large signal model	small signal model
0.1V		
0.01V		
0.001V		

Zener Diodes \rightarrow Chapter 4.4

 V_{Z0}

• These are referred to as Zener Diodes.

 V_Z

 $V_z = V_z + r_z \cdot I_z$

******* for V_z > V_{z0}

Ι_z > **Ι**_{zκ}

 $-V_{7}$

Slope = -

 $\Delta V -$

 $-V_{7K}$

 $\Delta V = \Delta I r_z$

↓i

 $\downarrow 0_{I_{ZK}}$

-IZT (test current)

IZ V