Bipolar Junction Transistors \rightarrow Chapter 6

- A three terminal device
- Invented in 1948 at Bell Telephone Laboratories
- Ushered in a new era of solid-state circuits
- Replaced by MOSFET as predominant transistors

- Simplified structure of the npn transistor

- Simplified structure of the npn transistor

BJT Operation

- Two external voltage sources are required for biasing
- Three operation modes:

1) Cut-Off
2) Saturation
3) Active
used for amplification!

BJT Operation

- Two external voltage sources are required for biasing
- Three operation modes:

used for switching!

1) Cut-Off
2) Saturation
3) Active
used for amplification!

BJT Mathematical Model \rightarrow Active

Base / Emitter Currents

$$
\begin{aligned}
& \boldsymbol{i}_{B}=\frac{\boldsymbol{i}_{\boldsymbol{C}}}{\boldsymbol{\beta}} \\
& \boldsymbol{i}_{E}=\boldsymbol{i}_{B}+\boldsymbol{i}_{C}=\frac{\beta+\mathbb{1}}{\beta} \boldsymbol{i}_{C}=\frac{\boldsymbol{i}_{C}}{\alpha} \\
& I_{S}-\text { Saturation Current }\left[10^{-12}-10^{-18}\right] \mathrm{A} \\
& I_{S}=\frac{A_{E} q D_{n} n_{i}}{N_{A} \mathcal{V}} \\
& \beta \text { - Current Gain }[50-200] \mathrm{A} / \mathrm{A} \\
& \quad \beta_{\text {forced }}=\left.\frac{i_{C}}{i_{B}}\right|_{\text {sat }} \leq \beta \\
& \propto \text { - Constant } \\
& \quad \alpha=\frac{\beta}{\beta+1} \\
& V_{A} \text { - Early Voltage }[10-100] \mathrm{V}
\end{aligned}
$$

Large Signal Model \rightarrow npn

Example 6.1

An npn transistor having $\mathrm{I}_{\mathrm{s}}=10^{-15} \mathrm{~A}, \beta=100$, and $\mathrm{V}_{\mathrm{A}}=\infty$ is connected as follows: the emitter is grounded, the base is fed with a constant-current source supplying a dc current of $10 \mu \mathrm{~A}$, and the collector is connected to a $5-\mathrm{V}$ dc supply via a resistance R_{C} of $3 \mathrm{k} \Omega$. Assuming that the transistor is operating in the active mode, find V_{BE} and V_{CE}. Use these values to verify active-mode operation. Replace the current source with a resistance connected from the base to the $5-\mathrm{V}$ dc supply. What resistance value is needed to result in the same operating conditions?

