Last Lecture \rightarrow BJTs - Chapter 6

- Two external voltage sources are required for biasing
- Three operation modes:

- Simplified structure of the npn transistor

- Simplified structure of the npn transistor

Last Lecture \rightarrow BJT (active)

Large Signal Model

Base / Emitter Currents

$$
i_{B}=\frac{\boldsymbol{i}_{C}}{\beta}
$$

$$
i_{E}=i_{B}+i_{C}=\frac{\beta+1}{\beta} i_{C}=\frac{i_{C}}{\alpha}
$$

Large Signal Model \rightarrow Active-Mode

Large Signal Model \rightarrow Active-Mode


```
Concen
- BE Junction \(\rightarrow\) forward bias \(\checkmark \quad \mathrm{V}_{\mathrm{BE}}>0.5 \mathrm{~V}\)
- BC Junction \(\rightarrow\) reverse bias
\(\checkmark v_{C E}<0.3 \mathrm{~V}\)
- \(\quad i_{C} \neq f\left(v_{B E}\right)\)
\(\checkmark \quad i_{C} / i_{B}<6\)
```


pnp
pnp - transistor

- EB Junction \rightarrow forward bias

- CB Junction \rightarrow reverse bias
$\checkmark \quad \mathrm{v}_{\mathrm{EC}}<0.3 \mathrm{~V}$
- $i_{C} \neq f\left(v_{E B}\right)$
$\checkmark \quad i_{C} / i_{B}<b$

Large Signal Models

1) Cut-Off
2) Saturation
3) Active

Example 6.3

For the given circuit ($R_{B}=10 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{c}}=1 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{cc}}=10 \mathrm{~V}$) assuming V_{BE} remains constant at 0.7 V and transistor β is specified to be 50, it is required to determine the value of the voltage V_{BB} that results in the transistor operating
a) in the active mode with $\mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V}$
b) at the edge of saturation ($\mathrm{V}_{\text {CEsat }}=0.3 \mathrm{~V}$)
c) deep in saturation $\left(\mathrm{V}_{\text {CEsat }}=0.2 \mathrm{~V}\right)$ with $\beta_{\text {forced }}=10$.

Example 6.5

For the given circuit ($\mathrm{R}_{\mathrm{C}}=4.7 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{E}}=3.3 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{cc}}=10 \mathrm{~V}$, $\mathrm{V}_{\mathrm{B}}=6 \mathrm{~V}$) determine the voltages at all nodes and the currents through all branches. Assume that the transistor β is specified to be at least 50 and $\mathrm{V}_{\mathrm{BE}}=0.7 \mathrm{~V}$ for all currents.

Problem 6.51

For the following circuit, assuming $\beta=50$ and $\mathrm{V}_{\mathrm{EB}}=0.7 \mathrm{~V}$ for all currents, determine the voltage V_{c} at the collector terminal. To what value should R_{B} be increased or decreased in order for the transistor to change operating modes.

Problem

For the following circuit determine the voltages at all nodes and the current through all branches assuming $\mathrm{V}_{\mathrm{BE}}=0.7 \mathrm{~V}, \beta=100, \mathrm{~V}_{\mathrm{dd}}=-\mathrm{V}_{\mathrm{SS}}=5 \mathrm{~V}$, and $\mathrm{V}_{\mathrm{B}}=5 \mathrm{~V}$.

