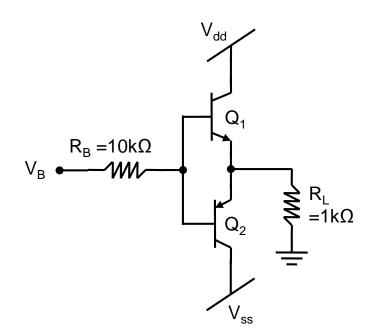


Procedure

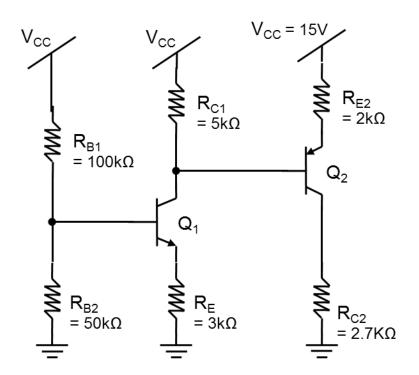
- 1) When applicable, simplify the circuit
- 2) Determine if BE/EB junction is forward (transistor = "on")
 - If reverse, transistor \rightarrow cut off
 - If forward, transistor → active / saturation
 Make an educated guess of the region of one
 - ... Make an educated guess of the region of operation
- 3) Substitute the appropriate model and or assumptions
- 4) Solve fot the transistor operating point ($I_c \& V_{CE}$)
- 5) Verify proper operation @ the assumed region
 - If cut off \rightarrow V_{BE} < 0.5V
 - If active $\rightarrow V_{CE} > 0.3V$
 - If saturation \rightarrow I_C / I_B < β

Problem 6.51


For the following circuit, assuming β =50 and V_{EB}=0.7V for all currents, determine the voltage V_c at the collector terminal. To what value should R_B be increased or decreased in order for the transistor to change operating modes.

 $R_{\rm C} = 1 K \Omega$

Example 6.12


For the following circuit determine the voltages at all nodes and the current through all branches assuming:

- a) V_{BE} =0.7V, β =100, V_{dd} = - V_{ss} =5V, and V_{B} =5V
- b) V_{BE} =0.7V, β =100, V_{dd} = - V_{ss} =5V, and V_{B} =0.3V

Example 6.11

For the following circuit determine the voltages at every node and the bias currents of transistors Q_1 and Q_2 . Assume $V_{BE} = |V_{EB}| = 0.7$ and $\beta = 100$.

