Large-Signal vs Small Signal Behavior

- 1) Bias current is stablished through V_{BB} and supplied by V_{cc}
- 2) AC signal is coupled through the capacitor and superimposed to the DC signal
- **3)** AC behavior will be determine by the circuit configuration and the DC bias

- Large-Signal stablishes the DC operating point of the circuit
- Small-Signal determines de circuit behavior around the DC operating point

Small Signal Equivalent Circuit

Small Signal Analysis

 \rightarrow with the small-signal model

Assuming β =200 and V_{BE} =0.7V find the input resistances R_{in} (seen by v_s) and the overall voltage gain v_o/v_s .

Procedure

- **1)** Determine the transistor bias current (DC Analysis)
- **2)** Determine the small-signal parameters
- 3) Draw the small-signal equivalent circuit
 - All DC sources off!
 - Low freq. cap shorted!
- 4) Replace transistor with small-signal circuit
- 5) Calculate the desired specifications

