INEL 4201 – PN Junction 3/9/2017

Last Lectures → CE & CC Amplifiers

Common Emitter

$$A_V = -g_m(R_c//r_0)$$
 • High Gain!

- 180° Shift!

Common Collector

$$A_V = rac{g_m R_E}{1 + g_m R_E} pprox 1$$
 • Gain <= 1

INEL 4201 – PN Junction 3/9/2017

Exercise 6.44

For the following circuit determine

- 1. the voltage gain v_o/v_i $(r_o=\infty)$
- 2. the impedance seen by the input source $(r_0=\infty)$
- 3. the output impedance

2

INEL 4201 – PN Junction 3/9/2017

BJT – Single Stage Amplifiers

Single Transistor Bipolar Amplifier	Common-Emmitter CE	Common-Collector CC	Common-Base CB
Voltage Gain $A_{oldsymbol{v}}=rac{v_o}{v_i}$	$\cong -\frac{g_m}{1+g_m Z_e} \cdot R_o //Z_c$	$\cong + \frac{g_m}{1 + g_m Z_e} \cdot Z_e$	$=+g_m\cdot R_o//Z_c$
Input Resistance R_i	$=r_{\pi}(1+g_{m}Z_{e})$	$=r_{\pi}\left(1+g_{m}Z_{e}\right)$	$\cong \frac{1}{g_m}$
Output Resistance R_o	$=r_o(1+g_mZ_e)$	$\cong \frac{1}{g_m} + \frac{Z_b}{\beta_o + 1}$	$= r_o[1 + g_m(Z_i//Z_e)]$

3

INEL 4201 – PN Junction 3/9/2017

Problem 6.155

For the given circuit, let transistor Q_1 have β =50 and transistor Q_2 have β =100, and neglect the effect of r_0 . Use V_{BE} =0.7V.

- a) Find the dc emitter currents of Q_1 and Q_2 along with the dc voltages V_{B1} and V_{B2} .
- b) Assuming a load resistance $R_L=1k\Omega$ is connected to the output terminal, determine the overall voltage gain v_o/v_{sig} and the input resistance R_{in} .

4