INEL 4201 – PN Junction 3/9/2017 # Last Lectures → CE & CC Amplifiers #### **Common Emitter** $$A_V = -g_m(R_c//r_0)$$ • High Gain! - 180° Shift! #### **Common Collector** $$A_V = rac{g_m R_E}{1 + g_m R_E} pprox 1$$ • Gain <= 1 INEL 4201 – PN Junction 3/9/2017 ## Exercise 6.44 For the following circuit determine - 1. the voltage gain v_o/v_i $(r_o=\infty)$ - 2. the impedance seen by the input source $(r_0=\infty)$ - 3. the output impedance 2 INEL 4201 – PN Junction 3/9/2017 ## BJT – Single Stage Amplifiers | Single Transistor
Bipolar Amplifier | Common-Emmitter
CE | Common-Collector
CC | Common-Base
CB | |--|--|---|----------------------------| | Voltage Gain $A_{oldsymbol{v}}= rac{v_o}{v_i}$ | $\cong -\frac{g_m}{1+g_m Z_e} \cdot R_o //Z_c$ | $\cong + \frac{g_m}{1 + g_m Z_e} \cdot Z_e$ | $=+g_m\cdot R_o//Z_c$ | | Input Resistance R_i | $=r_{\pi}(1+g_{m}Z_{e})$ | $=r_{\pi}\left(1+g_{m}Z_{e}\right)$ | $\cong \frac{1}{g_m}$ | | Output Resistance R_o | $=r_o(1+g_mZ_e)$ | $\cong \frac{1}{g_m} + \frac{Z_b}{\beta_o + 1}$ | $= r_o[1 + g_m(Z_i//Z_e)]$ | 3 INEL 4201 – PN Junction 3/9/2017 ## Problem 6.155 For the given circuit, let transistor Q_1 have β =50 and transistor Q_2 have β =100, and neglect the effect of r_0 . Use V_{BE} =0.7V. - a) Find the dc emitter currents of Q_1 and Q_2 along with the dc voltages V_{B1} and V_{B2} . - b) Assuming a load resistance $R_L=1k\Omega$ is connected to the output terminal, determine the overall voltage gain v_o/v_{sig} and the input resistance R_{in} . 4