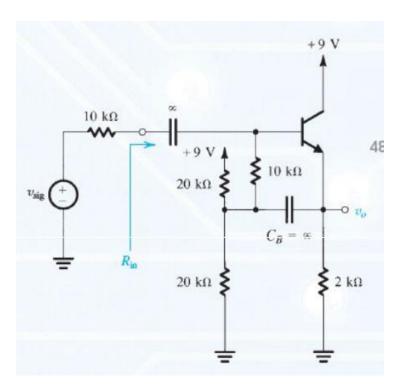

Last Lectures → **Single Stage Amplifiers**

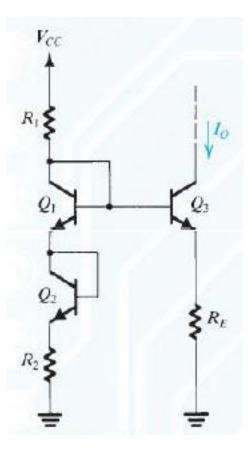


Single Transistor Bipolar Amplifier	Common-Emmitter CE	Common-Collector CC	Common-Base CB
Voltage Gain $A_v = rac{v_o}{v_i}$	$\cong -\frac{g_m}{1+g_m Z_e} \cdot R_o //Z_c$	$\cong + \frac{g_m}{1 + g_m Z_e} \cdot Z_e$	$= +g_m \cdot R_o //Z_c$
Input Resistance R_i	$= r_{\pi}(1 + g_m Z_e)$	$=r_{\pi}\left(1+g_{m}Z_{e}\right)$	$\cong rac{1}{g_m}$
Output Resistance R_o	$= r_o(1 + g_m Z_e)$	$\cong \frac{1}{g_m} + \frac{Z_b}{\beta_o + 1}$	$= r_o[1 + g_m(Z_i//Z_e)]$

Problem 6.154

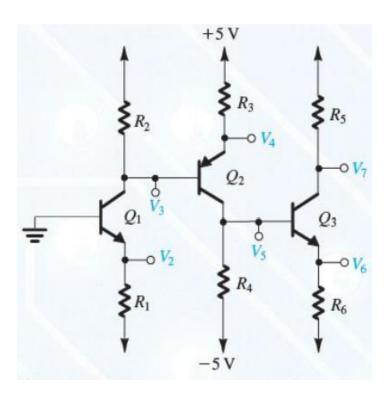
For the given circuit, assume β =100 and V_{BE} =0.7V.

- a) Find the dc emitter currents and the small signal parameters.
- b) Determine the overall voltage gain v_o/v_{sig} and the input resistance R_{in} .
- c) Repeat b) for the case when capacitor C_B is open-circuited. Compare the results with those obtained in b).



2

Problem 6.140


For the given circuit, assuming all transistors to be identical with β infinite,

- a) derive an expression for the output current I_0 , and show that by selecting $R_1 = R_2$ and keeping the current in each junction the same, the current I_0 will be $I_0 = V_{CC}/(2R_E)$
- b) What must be the relationship of R_E to R_1 and R_2 be?
- c) For V_{cc} =10V and V_{BE} =0.7V, design the circuit to obtain an output current of 0.5mA.
- d) What is the lowest voltage that can be applied to the collector of Q_3 ?

Problem 6.68

Assuming β =infinite, design the given circuit so that the bias currents in Q_1 , Q_2 , and Q_3 are 1mA, 1mA, and 2mA, respectively, and V_3 =0, V_5 =-2V, and V_7 =1V.

4