Last Lectures \rightarrow Single Stage Amplifiers

Common Emitter - CE

Common Collector - CC

Common Base - CB

Single Transistor Bipolar Amplifier	Common-Emmitter CE	Common-Collector CC	Common-Base CB
Voltage Gain $A_{v}=\frac{v_{o}}{v_{i}}$	$\cong-\frac{g_{m}}{1+g_{m} Z_{e}} \cdot R_{o} / / Z_{c}$	$\cong+\frac{g_{m}}{1+g_{m} Z_{e}} \cdot Z_{e}$	$=+g_{m} \cdot R_{o} / / Z_{c}$
Input Resistance R_{i}	$=r_{\pi}\left(1+g_{m} Z_{e}\right)$	$=r_{\pi}\left(1+g_{m} Z_{e}\right)$	$\cong \frac{1}{g_{m}}$
Output Resistance R_{o}	$=r_{o}\left(1+g_{m} Z_{e}\right)$	$\cong \frac{1}{g_{m}}+\frac{Z_{b}}{\beta_{o}+1}$	$=r_{o}\left[1+g_{m}\left(Z_{i} / / Z_{e}\right)\right]$

Problem 6.140

For the given circuit, assuming all transistors to be identical with β infinite,
a) derive an expression for the output current I_{0}, and show that by selecting $R_{1}=R_{2}$ and keeping the current in each junction the same, the current I_{0} will be $\mathrm{I}_{0}=\mathrm{V}_{\mathrm{CC}} /\left(2 \mathrm{R}_{\mathrm{E}}\right)$
b) What must be the relationship of R_{E} to R_{1} and R_{2} be?
c) For $\mathrm{V}_{\mathrm{cc}}=10 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{BE}}=0.7 \mathrm{~V}$, design the circuit to obtain an output current of 0.5 mA .
d) What is the lowest voltage that can be applied to the collector of Q_{3} ?

Problem 6.148

