Last Lecture \rightarrow MOS

- Two external voltage sources are required for biasing
- Three operation modes:

1) Cut-Off
used for switching!
2) Ohmic
3) Saturation
used for amplification!

nMOS Operation \rightarrow Saturation

Over-drive Voltage

- $\mathbf{V}_{\mathrm{GS}}>\mathrm{V}_{\text {th }}$
- $\mathbf{V}_{\mathrm{DS}}>\mathbf{V}_{\mathrm{GS}}-\mathbf{V}_{\mathrm{th}}=\mathrm{V}_{\mathrm{ov}}$
- $i_{G}=0$
Channel Length Modulation
Parameter [1/V]

$$
\begin{aligned}
& I_{D}=\frac{1}{2} k_{n}{ }^{\prime} \frac{W}{L}\left(V_{G S}-V_{t h}\right)^{2}\left(1+\lambda V_{D S}\right) \\
& \approx \frac{1}{2} k_{n}{ }^{\prime} \frac{W}{L}\left(V_{G S}-V_{t h}\right)^{2} \\
& \text { Transconductance Parameter }\left[\mathrm{A} / \mathrm{V}^{2}\right]
\end{aligned}
$$

nMOS Operation \rightarrow Ohmic

Over-drive Voltage

- $\mathbf{V}_{\mathrm{GS}}>\mathbf{v}_{\mathrm{th}}$
- $\mathbf{v}_{\mathrm{DS}}<\mathbf{v}_{\mathrm{GS}}-\mathbf{v}_{\mathrm{th}}=\mathrm{v}_{\mathrm{ov}}$
- $i_{G}=0$

$$
\begin{aligned}
I_{D} & =k_{n}{ }^{\prime} \frac{W}{L}\left[\left(V_{G S}-V_{t h}\right)\left(V_{D S}\right)-\frac{1}{2} V_{D S}{ }^{2}\right] \\
& \approx k_{n}{ }^{\prime} \frac{W}{L}\left(V_{G S}-V_{t h}\right) \cdot V_{D S} \\
& r_{d s}=\frac{1}{k_{n}^{\prime} \frac{W}{L}\left(V_{G S}-V_{t h}\right)}
\end{aligned}
$$

Example 5.2

Consider an nMOS transistor fabricated in a $0.18 \mu \mathrm{~m}$ process with $\mathrm{L}=0.18 \mu \mathrm{~m}$ and $\mathrm{W}=2 \mathrm{um}$. The process technology is specified to have $C_{o x}=8.6 f F / \mu \mathrm{m}^{2}, \mu_{\mathrm{n}}=450 \mathrm{~cm}^{2} / \mathrm{V} \cdot \mathrm{s}$, and $\mathrm{V}_{\mathrm{th}}=0.5 \mathrm{~V}$.
a) Find $V_{G S}$ and $V_{D S}$ that result in the MOSFET operating at the edge of saturation with $I_{D}=100 \mu \mathrm{~A}$.
b) If $V_{G S}$ is kept constant, find $V_{D S}$ that results in $I_{D}=50 \mu A$.
c) To investigate the use of the MOSFET as a linear amplifier, let it be operating in saturation with $\mathrm{V}_{\mathrm{DS}}=0.3 \mathrm{~V}$. Find the change in i_{D} resulting from $v_{G S}$ changing from 0.7 V by +0.01 V and by -0.01 V .
a) $\mathrm{K}_{\mathrm{n}}=4.3 \mathrm{~mA}$
$\rightarrow \mathrm{V}_{\mathrm{ov}}=\mathrm{V}\left(2 \cdot I_{\mathrm{D}} / \mathrm{K}_{\mathrm{n}}\right)=0.22 \mathrm{mV}$
$\rightarrow \mathrm{V}_{\text {DS }}=\mathrm{V}_{\text {ov }}=0.22 \mathrm{mV}$
$\rightarrow \mathrm{V}_{\mathrm{GS}}=\mathrm{V}_{\mathrm{th}}+\mathrm{V}_{\mathrm{ov}}=0.72 \mathrm{mV}$.

Exercise 5.5

An n-channel MOSFET operating with $\mathrm{V}_{\mathrm{ov}}=0.5 \mathrm{~V}$ exhibits a linear resistance $\mathrm{r}_{\mathrm{DS}}=1 \mathrm{k} \Omega$ when v_{DS} is very small.
a) What is the value of the device trans-conductance parameter K_{n} ?
b) Assuming $\lambda=0$, what is the value of the current I_{D} obtained when $v_{D S}$ is increased to 0.5 V ? And to 1 V ?
c) Assuming an $\lambda=0.1 \mathrm{~V}^{-1}$, what is the value of the current I_{D} obtained when v_{DS} is increased to 0.5 V ? And to 1 V ?

