Last Lecture → MOS DC Analysis

Example 5.3

Assuming λ =0, design the circuit below, that is, determine the values of R_D and R_S, so that the transistor operates at I_D=0.4mA and V_D=0.5V. The NMOS transistor has V_{th}=0.7V, $\mu_n C_{ox}$ =100 μ A/V², and W/L=32.

Example 5.7

Assuming λ =0, design the circuit below, so that the transistor operates in saturation with I_D=0.5mA and V_D=3V. The PMOS transistor has V_{th}=-1V, K_p=1mA/V². What is the largest value that R_D can have while maintaining saturation-region operation?

MOS Behavior → Intuitively

Choose the plot that best represents each circuit behavior!

Example 5.8

Assuming matched NMOS and PMOS transistors with V_{thn} =- V_{thp} =1V, K_n = K_p =1mA/V² and λ =0, find the drain currents I_{Dn} and I_{Dp} , as well as the voltage v_o , for v_1 =0V, +2.5V, and -2.5V.

