Last Lecture \rightarrow Example 5.8

Assuming matched NMOS and PMOS transistors with $V_{thn} = -V_{thp} = 1V$, $K_n = K_p = 1mA/V^2$ and $\lambda = 0$, find the drain currents I_{Dn} and I_{Dp} , as well as the voltage v_o , for $v_1 = 0V$, +2.5V, and -2.5V.

Exercise 5.15

Assuming matched NMOS and PMOS transistors with $V_{thn} = -V_{thp} = 1V$, $K_n = K_p = 1mA/V^2$ and $\lambda = 0$, find the drain currents I_{Dn} and I_{Dp} , as well as the voltage v_o , for $v_1 = 0V$, +2.5V, and -2.5V.

MOSFET Biasing for Amplification

For the given common source amplifier, assuming is operating in the saturation region with $V_{th} = 0.4V$, $K_n = 4mA/V^2$, $V_{DD} = 1.8V$, $R_D = 17.5k\Omega$, and $\lambda = 0$,

- a) find the bias point for a voltage gain of -14V/V and
- b) determine the maximum symmetrical signal swing allowed at the drain.
- c) determine the resistance seen by the gate and the drain of the transistor

Example 5.10

For the given circuit, determine the small-signal voltage gain, and its input resistance. The transistor has $V_{th} = 1.5V$, $K_n = 250 \mu A/V^2$, and $\lambda = 0.02V^{-1}$.

DC Bias

• V_{ov}=2.9V

