

Basic MOSFETs Amplifier Configuration

Problem

An common source NMOS amplifier is to be designed to provide a 0.5V peak output signal across a 50k Ω load that can be used as a drain resistor. If a gain of at least -5V/V is needed, what g_m is required? Using a dc supply of 1.8V, what values of I_d and V_{ov} would you choose? What W/L ratio is required if $k_n'=200\mu A/V^2$? If $V_t=0.4V$, find V_{gs} .

Exercise 5.41

Consider the given common collector amplifier with $g_m = 1mA/V$ and $r_0 = 150k\Omega$. Let $R_{sig} = 1M\Omega$, $R_G = 1M\Omega$, and $R_L = 15k\Omega$,

- a) Find R_{in} , $A_v = V_0 / V_i$, and R_0 without and with r_0 taken into account.
- b) Find the overall voltage gain $G_v = v_0 / v_{sig}$ with r_0 taken into account,

Problem

Design the given circuit so that the transistor operates in saturation with V_{DS} biased 1V form the edge of the triode region, with $I_D=1$ mA and $V_D=3V$, for each of the following two devices (use a 10µA current in the voltage divider):

- a) $|V_t|=1V$ and $K_p=0.5mA/V^2$
- b) $|V_t|=2V$ and $K_p=1.25$ mA/V²

For each case, specify the values of V_G, V_D, V_S, R₁, R₂, R_S, and R_D.

