## Problem 5.114

The figure below shows a scheme for coupling and amplifying a high-frequency pulse signal. The circuit utilizes two MOSFETs whose bias details are not shown and a 50- $\Omega$  coaxial cable. For proper operation, transistor  $Q_2$  is required to present a 50- $\Omega$  resistance to the cable. This situation is known as "proper termination" of the cable and ensures that there will be no signal reflection comping back on the cable. When the cable is properly terminated, input resistance is 50- $\Omega$ .

- 1) What must g<sub>m2</sub> be?
- 2) If  $Q_1$  is biased at the same point as  $Q_2$ , what is the amplitude of the current pulses in the drain of  $Q_1$ ?
- 3) What is the amplitude of the voltage pulses at the drain of Q<sub>1</sub>?
- 4) What value of R<sub>D</sub> is required to provide 1-V pulses at the drain of Q<sub>2</sub>?



## Depletion-Type MOSFET

- Has a physically implanted channel
  - $\rightarrow$  there is no need to induce a channel to conduct current!
- The channel depth and hence its conductivity can be controlled by v<sub>GS</sub> in exactly the same manner as in the enhancement-type device
- The threshold voltage is negative!!!!

DO

S

 $i_G = 0$ 

GO

CGS



## Problem 5.109

The figure below shows a variation of the feedback bias circuit of Fig. 5.54. Using a 5-V supply with an NMOS transistor for which  $V_t = 1V$ ,  $k_n = 6.25 \text{ mA}/V^2$  and  $\lambda = 0$ , provide a design that biases the transistor at  $I_D = 2\text{mA}$ , with  $V_{DS}$  large enough to allow saturation operation for a 2-V negative signal swing at the drain. Use 22 M $\Omega$  as the largest resistor in the feedback-bias network. What values of  $R_D$ ,  $R_{G1}$ , and  $R_{G2}$  have you chosen? Specify all resistor to two significant digits.



## Problem 5.124

For the given circuit, assuming that the transistor is sized an biased so that  $g_m = 1mA/V$ ,  $r_0 = 100k\Omega$ ,  $R_L = 10k\Omega$ ,  $R_1 = 500k\Omega$ , and  $R_2 = 1k\Omega$ , find the overall voltage gain  $v_o/v_{sig}$  and the input resistance  $R_{in}$ .

