Problem – D8.120

For the circuit below assume all transistors have $|V_{BE}|=0.7V$, $V_{A}=200V$, and $\beta=100$.

- a) Perform a bias calculation assuming $|V_{BE}| = 0.7V$, $V_A = \infty$, $\beta = \infty$, $v_+ = v_- = 0$ and v_o is stabilized by feedback to about 0V. Find R so that the reference current I_{ref} is 100µA. What are the voltages at all the labeled nodes?
- b) Provide the bias current in all transistors together with g_m and r_o .

Small-Signal Gain

<u>Bipolar</u>

Common Emitter - CE

Common Collector - CC

Common Base - CB

Single Transistor Bipolar Amplifier	Common-Emmitter CE	Common-Collector CC	Common-Base CB
Voltage Gain $A_v = rac{v_o}{v_i}$	$\cong -\frac{g_m}{1+g_m Z_e} \cdot R_o //Z_c$	$\cong + \frac{g_m}{1 + g_m Z_e} \cdot Z_e$	$=+g_m\cdot R_o//Z_c$
Input Resistance R_i	$= r_{\pi}(1+g_m Z_e)$	$= r_{\pi}(1 + g_m Z_e)$	$\cong \frac{1}{g_m}$
Output Resistance R _o	$= r_o(1 + g_m Z_e)$	$\cong \frac{1}{g_m} + \frac{Z_b}{\beta_o + 1}$	$= r_o [1 + g_m (Z_i / / Z_e)]$

Problem -4.93

Sketch and label the voltage transfer characteristic v_0 versus v_i of the circuit provided below over a ± 10 -V range of input signals. Assume a constant voltage drop of 0.7V for all diodes. What are the slopes of the characteristic at the extreme ± 10 -V levels?

Problem – D4.82

Consider the circuit below with two equal filter capacitors placed across the load resistors R. Assume that the diodes available exhibit a 0.7-V drop when conducting. Design the circuit to provide \pm 15V dc output voltages with a peak-to-peak ripple no greater than 1V. Each supply should be capable of providing 200mA dc current to its load resistor R. Completely specify the capacitors, diodes and the transformer.

Rectifiers

• Half-Wave Sine (T= $0 \rightarrow \pi$)

$$\overline{V_0} = 2 \frac{V_{peak}}{\pi}$$

• Half-Wave (filtered)

$$V_r = \frac{V_S}{fCR} \approx \frac{I_L}{fC}$$

$$\Delta \theta \approx \sqrt{2V_r/V_S}$$

$$i_{Davg} = I_L \left(1 + \pi \sqrt{2V_S/V_r}\right)$$

$$i_{Dmax} = I_L \left(1 + 2\pi \sqrt{2V_S/V_r}\right)$$

• Full-Wave (filtered)

$$V_r = \frac{V_S}{2fCR} \approx \frac{I_L}{2fC}$$

$$\Delta \theta \approx \sqrt{2V_r/V_S}$$

$$i_{Davg} = I_L \left(1 + \pi \sqrt{V_S/2V_r} \right)$$

$$i_{Dmax} = I_L \left(1 + 2\pi \sqrt{V_S/2V_r} \right)$$