Problem - D8. 120

For the circuit below assume all transistors have $\left|V_{B E}\right|=0.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{A}}=200 \mathrm{~V}$, and $\beta=100$.
a) Perform a bias calculation assuming $\left|\mathrm{V}_{\mathrm{BE}}\right|=0.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{A}}=\infty, \beta=\infty, \mathrm{v}_{+}=\mathrm{v}_{\mathbf{-}}=0$ and v_{o} is stabilized by feedback to about $0 V$. Find R so that the reference current $I_{\text {ref }}$ is $100 \mu A$. What are the voltages at all the labeled nodes?
b) Provide the bias current in all transistors together with g_{m} and r_{0}.

Small-Signal Gain

Bipolar

Common Emitter - CE

Common Collector - CC

Common Base - CB

Single Transistor Bipolar Amplifier	Common-Emmitter CE	Common-Collector CC	Common-Base CB
Voltage Gain $A_{v}=\frac{v_{o}}{v_{i}}$	$\cong-\frac{g_{m}}{1+g_{m} Z_{e}} \cdot R_{o} / / Z_{c}$	$\cong+\frac{g_{m}}{1+g_{m} Z_{e}} \cdot Z_{e}$	$=+g_{m} \cdot R_{o} / / Z_{c}$
Input Resistance R_{i}	$=r_{\pi}\left(1+g_{m} Z_{e}\right)$	$=r_{\pi}\left(1+g_{m} Z_{e}\right)$	$\cong \frac{1}{g_{m}}$
Output Resistance R_{o}	$=r_{o}\left(1+g_{m} Z_{e}\right)$	$\cong \frac{1}{g_{m}}+\frac{Z_{b}}{\beta_{o}+1}$	$=r_{o}\left[1+g_{m}\left(Z_{i} / / Z_{e}\right)\right]$

Problem - 4.93

Sketch and label the voltage transfer characteristic v_{o} versus v_{i} of the circuit provided below over a $\pm 10-\mathrm{V}$ range of input signals. Assume a constant voltage drop of 0.7 V for all diodes. What are the slopes of the characteristic at the extreme $\pm 10-\mathrm{V}$ levels?

Problem - D4.82

Consider the circuit below with two equal filter capacitors placed across the load resistors R. Assume that the diodes available exhibit a $0.7-\mathrm{V}$ drop when conducting. Design the circuit to provide $\pm 15 \mathrm{~V}$ dc output voltages with a peak-to-peak ripple no greater than 1V. Each supply should be capable of providing 200 mA dc current to its load resistor R . Completely specify the capacitors, diodes and the transformer.

Capacitor: \qquad mF \qquad volts

Diodes- DC current rating: \qquad A Breakdown voltage: \qquad Volts

I surge: \qquad A Peak current: \qquad A

Transformer- Prim/sec: \qquad 1 \qquad

Rectifiers

- Half-Wave Sine $(\mathrm{T}=0 \rightarrow \pi)$

$$
\overline{V_{0}}=2 \frac{V_{p e a k}}{\pi}
$$

- Half-Wave (filtered)

$$
\begin{aligned}
& V_{r}=\frac{V_{S}}{f C R} \approx \frac{I_{L}}{f C} \\
& \Delta \theta \approx \sqrt{2 V_{r} / V_{S}} \\
& i_{D a v g}=I_{L}\left(1+\pi \sqrt{2 V_{S} / V_{r}}\right) \\
& i_{D \max }=I_{L}\left(1+2 \pi \sqrt{2 V_{S} / V_{r}}\right)
\end{aligned}
$$

- Full-Wave (filtered)

$$
\begin{aligned}
& V_{r}=\frac{V_{S}}{2 f C R} \approx \frac{I_{L}}{2 f C} \\
& \Delta \theta \approx \sqrt{2 V_{r} / V_{S}} \\
& i_{D a v g}=I_{L}\left(1+\pi \sqrt{V_{S} / 2 V_{r}}\right) \\
& i_{D \max }=I_{L}\left(1+2 \pi \sqrt{V_{S} / 2 V_{r}}\right)
\end{aligned}
$$

