

Wireless Networking Technologies for ICOM 5047

By: Dr. Kejie Lu Assistant Professor Department of Electrical and Computer Engineering

CCLI Project

Outline

- Objectives
- Introduction
- Wireless networks
- How to design?

The Objectives

- This talk is prepared for ICOM students who are taking course ICOM 5047 (capstone)
- The main objectives are
 - To present a wide range of available wireless networking technologies
 - To discuss how to select appropriate technologies for a capstone project
 - To provide information about regulation, standard, etc.

What Do We Have Today?

- Cellular networks
 - AT&T
 - Claro
 - T-Mobile

- WiFi
 - IEEE 802.11 based wireless local area networks
 - RUMNET
- Bluetooth

What's Next?

- We are currently moving from the Personal Computer Age towards the Ubiquitous Computing Age
 - People can access required information <u>anytime and</u> <u>everywhere</u>
- In this transition, wireless networks are the essential elements

Wireless Networks

- A network that uses radio/mechanical signals to enable communication among computers and other network devices
- One of the most important technologies today!

Benefits of Wireless Networks

Mobility	 People moves, devices too.
Cost	 Cheap to develop.
Installation	• Wireless can install anywhere.
Ease of use	• Plug & Play.
Transparency	 Users work similar like wired LANs.
Time savings	 Temporary networks

Outline

- Objectives
- Introduction
- Wireless networks
 - Fundamentals
 - Categories
 - Existing wireless networks
- How to design?

Fundamentals

- Two types of waves can be used for wireless communications
 - Electromagnetic
 - Mechanical (acoustic)
- Frequency: the number of oscillations per second of a wave
 - Denoted as f and the unit of frequency is Hz (Hertz)
- <u>Wavelength</u>: The distance between two consecutive maxima (minima)
 - Denoted as λ and the unit of wavelength is meter (m)

Mechanical Wave

Mechanical waves can be transmitted in gases, liquids, and solids

The Electromagnetic Spectrum

н

The Electromagnetic Spectrum

- Band names (defined by the ITU)
 - VLF: very low frequency
 - LF: low frequency
 - MF: medium frequency
 - HF: high frequency
 - VHF: very high frequency
 - UHF: ultra high frequency
 - SHF: super high frequency
 - EHF: extreme high frequency
 - THF: tremendous high frequency

- ITU = International Telecommunication Union
 - ITU-R = Radio communication sector

Regulation for Using the EM Spectrum

- US: FCC (Federal Communications Commission)
 - The ISM bands in the United States
 - ISM: Industrial, Scientific, Medical

Radio Transmission

- In the VLF, LF, and MF bands, radio waves follow the curvature of the earth.
- In the HF band, they bounce off the ionosphere.

Microwave Transmission

- If the frequency of a wave is larger than 100MHz, then the transmission is nearly straight lines
 - Energy can be concentrated into a small beam
 - Wave can hardly pass through building

Usage

- Long distance telephone communications
- Mobile phone
- Television

Infrared and Millimeter Waves

- Transmission: directional
- Cost: low
- Cannot pass object
 - Pros: less interference, security
 - Cons: limited coverage

• Usage:

Remote controller

Light Wave Transmission

A bidirectional system with two lasers

Light Wave Transmission

An in-door visible light communication system

Light Wave Transmission

An in-door visible light communication system

Outline

- Objectives
- Introduction
- Wireless networks
 - Fundamentals
 - <u>Categories</u>
 - Existing wireless networks
- How to design?

Categories of Wireless Networks

- By scale
- By structure
- By application

Categories by Scale

- Body area network (BAN)
 - Cover I meter
- Personal area network (PAN)
 - Cover 10 meters
- Local area network (LAN)
 - Cover a few hundred meters
- Metropolitan area network (MAN)
 - Cover up to a few tens kilometers
- Wide area network (WAN)
 - Cover a large area

Categories by Scale

- Wireless Personal Area Networks (WPAN)
 - Bluetooth, Wibree, Zigbee
 - Standards in IEEE 802.15
- Wireless Local Area Networks (WLAN)
 - Standards in IEEE 802.11 (Wi-Fi)
- Wireless Metropolitan Area Networks (WMAN)
 - Standards in IEEE 802.16 (WiMAX)
 - With a single base station
- Wireless Wide Area Networks (WWAN)
 - Cellular networks
 - ▶ 2G, 3G, 4G
 - Satellite networks (GPS)

- One-hop networks
 - ► Wi-Fi, WiMAX
- Cellular networks
 - ▶ GSM, CDMA, WiMAX, 2G, 3G, 4G
- Mobile Ad Hoc Network (MANETs)
 - Nodes with mobility and ad hoc connectivity (e.g., soldiers and vehicles in battle field)

Wireless Mesh Networks (WMNs)

 Built with the existing network technologies:WPAN,WLAN, WMAN

One-hop networks

Cellular networks

Mobile ad hoc networks (MANETs)

Wireless mesh networks (WMNs)

Categories by Application

- Wireless Sensor Networks (WSN)
 - Sense data from surrounding environment

- Vehicular Ad hoc Networks (VANET)
 - Exchange traffic related information

Outline

- Objectives
- Introduction
- Wireless networks
 - Fundamentals
 - Categories
 - Existing wireless networks
- How to design?

Cellular Networks

Gen.	Technology	Features
1G	 AMPS 	 Analog Voice Communication only.
2G	GSMIS-95 CDMA	 Digital voice and data Simple email and text messages
3G	 WCDMA (European) CDMA2000 (USA) TD-SCDMA (China) 	 Based on CDMA Data transfer rates up to 2.4Mbps Supports better Internet connections Video
4G	IEEE 802.16mLTE Advanced	 Based on OFDM and MIMO Very high speed I00Mbps for high mobility I000Mbps for low mobility

LTE: Long term evolution

Wireless Personal Area Networks (WPAN)

- Bluetooth, Wibree and Zigbee.
- Features:
 - Low Power
 - Coverage (radius < 10 meters)</p>
- 🕨 🚯 Bluetooth"
 - Operates in the 2.4 GHz spectrum.
 - Standards:
 - Bluetooth vI.I
 - ▶ IEEE 802.15.1

шівкее 送

- Bluetooth low energy technology
 - Bluetooth ULP (Ultra Low Power)

Zigbee - IEEE 802.15.4

- Zigbee Alliance
 - Group of developers, vendors and manufacturers.
- IEEE 802.15.4 standard
- Uses 2.4 GHz spectrum
- Features:
 - Low cost, power and bandwidth.
 - Powered by long-life batteries
 - Simpler, cheaper than Bluetooth

Zigbee: Topology

- Coordinator (ZC): Only one, Most Capability, functionality.
- Router (ZR): Passes data among end-devices.
- End Device (ZED): switches, detectors.

Zigbee: Applications

CCLI Project

WPAN: Comparison

	Bluetooth	Wibree	ZigBee	
Band	2.4GHz	2.4GHz	2.4GHz, 868MHz, 915MHz	
Antenna/HW	Sha	Independent		
Power	100 mW	~10 mW	30 mW	
Target Battery Life	Days - months	1-2 years	6 months - 2 years	
Range	10-30 m	10 m	10-75 m	
Data Rate	1-3 Mbps	1 Mbps	25-250 Kbps	
Component Cost	\$3	Bluetooth + 20¢	\$2	
Network Topologies	Ad hoc, point to point, star	Ad hoc, point to point, star	Mesh, ad hoc, star	
Security	128-bit encryption	128-bit encryption	128-bit encryption	
Time to Wake and Transmit	3s	ТВА	15ms	

Wireless Local Area Networks (WLANs)

- The most popular Wireless network
- IEEE 802.11 standards.
- Coverage
 - radius < 200~500 meters</p>
- Applications: Medicine, Education, Government, Public Access, etc.

Protocol	Release Date	Op. Frequency	Data Rate (Typ)	Data Rate (Max)	Range (Indoor)
Legacy	1997	2.4 -2.5 GHz	1 Mbit/s	2 Mbit/s	?
802.11a	1999	5.15-5.35/5.47-5.725/5.725-5.875 GHz	25 Mbit/s	54 Mbit/s	~50 meters
802.11b	1999	2.4-2.5 GHz	6.5 Mbit/s	11 Mbit/s	~100 meters
802.11g	2003	2.4-2.5 GHz	11 Mbit/s	54 Mbit/s	~100 meters
802.11n	2006 (draft)	2.4 GHz or 5 GHz bands	200 Mbit/s	540 Mbit/s	~250 meters

WLAN: More Standards (1)

- IEEE 802.11a 54 Mbit/s, 5 GHz standard (1999, shipping products in 2001)
- IEEE 802.11b Enhancements to 802.11 to support 5.5 and 11 Mbit/s (1999)
- IEEE 802.11c Bridge operation procedures; included in the IEEE 802.1D standard (2001)
- IEEE 802.11d International (country-to-country) roaming extensions (2001)
- IEEE 802.11e Enhancements: QoS, including packet bursting (2005)
- IEEE 802.11F Inter-Access Point Protocol (2003) Withdrawn February 2006
- IEEE 802.11g 54 Mbit/s, 2.4 GHz standard (backwards compatible with b) (2003)
- IEEE 802.11h Spectrum Managed 802.11a (5 GHz) for European compatibility (2004)
- IEEE 802.11i Enhanced security (2004)
- IEEE 802.11j Extensions for Japan (2004)
- IEEE 802.11-2007 A new release of the standard that includes amendments a, b, d, e, g, h, i & j. (July 2007)
- IEEE 802.11k Radio resource measurement enhancements (2008)
- IEEE 802.11n Higher throughput improvements using MIMO (multiple input, multiple output antennas) (November 2009)
- IEEE 802.11p WAVE Wireless Access for the Vehicular Environment (such as ambulances and passenger cars).

WLAN: More Standards (2)

- IEEE 802.11r Fast roaming Working "Task Group r" (2008)
- IEEE 802.11s Mesh Networking, Extended Service Set (ESS) (working September 2010)
- IEEE 802.11T Wireless Performance Prediction (WPP) test methods and metrics Recommendation cancelled
- IEEE 802.11u Interworking with non-802 networks (for example, cellular) (working September 2010)
- IEEE 802.11v Wireless network management (working June 2010)
- IEEE 802.11w Protected Management Frames (working September 2009)
- IEEE 802.11y 3650-3700 MHz Operation in the U.S. (2008)
- IEEE 802.11z Extensions to Direct Link Setup (DLS) (August 2007 December 2011)
- IEEE 802.11aa Robust streaming of Audio Video Transport Streams (March 2008 June 2011)
- IEEE 802.11mb Maintenance of the standard. Expected to become 802.11-2011. (ongoing)
- IEEE 802.11ac Very High Throughput <6GHz (September 2008 December 2012)</p>
- IEEE 802.11ad Extremely High Throughput 60GHz (December 2008 December 2012)

WLAN: Topologies

Infrastructure

- BSS
 - Basic Service Set
- Needs an AP
- BSSID = SSID
 - Basic Service Set
 Identifier

Ad-Hoc

- IBSS
 - Independent BSS
- Peer to peer
- AP is not necessary

Extended Service Set

- ESS=BSSs+DS
 - Multiple BSS
 - Distribution System

WLAN: Security

MAC Filtering

- Set up into the router.
- Replacement for WEP
- WPA2
 - Based on IEEE
 802.11i
- Use AES & TKIP

SSID Hiding

Do not allow SSID broadcast.

WEP

- RC4 Algorithm
- Vulnerable to attacks
- 64 & 128 bit keys

Wireless Metropolitan Area Networks (WMAN)

- IEEE 802.16 (WiMAX).
- WiMAX Forum: To promote compatibility and interoperability

Wireless Sensor Networks (WSN)

Wireless Mesh Networks (WMNs)

- Compared to mobile ad hoc network (MANET), WMN does not emphasize mobility
- Built with the existing network technologies
 - WPAN, WLAN, WMAN
- Focus:
 - Multihop communications.
- Principal Features:
 - Self-forming
 - Self-healing
 - Self-organizing

WMNs: Architecture

- Consist of <u>mesh routers</u> and <u>mesh clients</u>.
 - Mesh routers have minimal mobility and form the mesh backbone for mesh clients.

WMNs: Applications

- Community networks
- Municipality networks
- Defense
- Emergency networks
- Intelligent transport systems, ...

Existing Testbeds

OVERVIEW OF WMNs TESTBED PROJECTS

Project	Nodes	802.11	Software	Routing		Roaming	Config	MANET
				Layer	Protocol			
MIT Roofnet	37	b/g	Linux	RL	SrcRR	_	×	_
Microsoft	21	a/b/g	Windows CE	MAC	MCL	_	\times	\times
USCB MeshNet	25	a/b/g	OpenWRT	IP	MCL	_	\times	_
Purdue	32	a/b/g	_	IP	AODV	_	\times	_
Georgia Tech	15	b/g	_	_	AODV,OLSR	_	_	_
Carleton Univ.	??	a/g	μClinux	IP	_	_	\times	_
Hyacinth	10	a	Windows XP	_	OLSR	\times	\times	_
UMIC-Mesh.net	51	a/b/g	Linux	IP	DYMO,OLSR	\times	\times	\times

Outline

- Objectives
- Introduction
- Wireless networks
- How to design?

Design a Wireless Network: Requirements

- Before choosing a <u>wireless networking technology</u>
 - > Try to understand the requirements.
- Find the right technology

Design a Wireless Network: Examples

- In the office environment, we need:
 - Basic deployment (<\$)</p>
 - Small coverage
 - High data rate
 - Low cost
 - Moderate mobility
 - Security
- In the battle field, we may need:
 - Strong planning and design
 - Large coverage
 - High mobility
 - Reliability
 - Strong security

Some Commonly Used Technologies

- In the last few semesters, the following technologies have been used in different capstone projects
 - Bluetooth
 - Cellular network
 - GPS
 - Infrared
 - RFID
 - Wi-Fi
 - Zigbee

- A capstone project in Fall 2008
 - Mobile Electrocardiogram (ECG)
 - To develop a portable device to sense the ECG signals and trigger alarm if abnormal conditions are detected

- The design utilizes the following wireless components
 - \Box Bluetooth
- Why?

The team decided to design a system that consists of

- A small device to sense the ECG signals and trigger alarm
- A cell phone that can set up the small device and can receive/forward the alarm

Why choose GSM?

- It provides a large coverage
 - To send alarm to doctors, nurses, relatives
- Cell phone is very common

Why choose Bluetooth?

- Short range communications
- Bluetooth is supported by most cell phones

- Team: a group of undergraduate students in UMASS
- Objective: to build a low-cost and long-range (>1 mile) communication system
- Solution
 - Using Wi-Fi adapter:
 - Low-cost
 - Using directional antenna:

Question: does this work?

54

- The Answer
 - > Yes, after fixing a software problem
 - Wi-Fi is designed as a LAN technology
- Their design is used for the CASA project

Projects in the Previous Semesters

Fall 2010

- E.A.R.S. Electronic Attendance Registry System
 - Zigbee, RFID
- Zero-Force Mouse
 - Zigbee
- TempMon
 - Zigbee, infrared
- OnPet
 - GSM, GPS

Projects in the Previous Semesters

Fall 2011

- Biometric access for electronic medical records
 - Bluetooth, GSM
- Boardcaster
 - ▶ Wi-Fi
- Ultra-Deep-Oceanic-Free-Vehicle
 - Bluetooth
- Universal Remote for Disabled People
 - Infrared, GSM
- Octo-Controller
 - Bluetooth
- JAM2
 - Bluetooth, GSM
- Smart Traffic Signal Preemption System
 - GSM
- SZDS: Surf Zone Drifter System
 - Zigbee
- Virtual Infrared Remote Control
 - Infrared, Zigbee

Questions