Universidad de Puerto Rico Recinto Universitario de Mayagüez Departamento de Ingeniería Eléctrica y Computadoras

INEL 3105	Asignacion	para	parcial	#1:
------------------	------------	------	---------	-----

Nombre:	 	 	
Sección:			

- 1. ¿Quieres ser ingeniero? ¿Qué eventos y personas en tu vida te convencieron tomar esta decision?
- 2. Con un amperímetro mides la corriente que fluye por un cable y lees -5A. ¿Qué significa el signo negativo? ¿Cuánta carga fluye por una sección transversal del cable en 3 segundos?

P2.5-1 A current source and a voltage source are connected in parallel with a resistor as shown in Figure P2.5-1. All of the elements connected in parallel have

the same voltage, v_s in this circuit. Suppose that v_s = 15 V, i_s = 3 A, and R = 5 Ω . (a) Calculate the current i in the resistor and the power absorbed by the resistor.

(b) Change the current source current to $i_s = 5$ A and recalculate the current, $i_s = 5$ A and recalculate the current $i_s = 5$ A and recalculate the current

the resistor and the power absorbed by the resistor.

P2.5-2 A current source and a voltage source are connected in series with a resistor as shown in Figure P 2.5-2. All of the elements connected in series have the same current, i_s , in this circuit. Suppose that $v_s = 10 \text{ V}$, $i_s = 2\text{A}$, and $R = 5 \Omega$. (a)

Calculate the voltage v across the resistor and the power absorbed by the resistor.

(b) Change the voltage source voltage to $v_s = 5$ V and recalculate the voltage, v, across the resistor and the power absorbed by the resistor.

P 2.7-7 Find the power absorbed by the CCVS in Figure P 2.7-7.

3.

P2.34. The 9-V source in Figure P2.34 is delivering 27 W of power. All three resistors have the same value R. Find the value of R.

Figure P2.34

4.

*P2.47. Write equations and solve for the node voltages shown in Figure P2.47. Then, find the value of i_1 .

Figure P2.47

5.

P2.62. Solve for the power delivered by the voltage source in Figure P2.62, using the mesh-current method.

