More examples of mathematical proofs

Lecture 4
ICOM 4075

Proofs by construction

A proof by construction is one in which an object that proves the truth value of an statement is built, or found

There are two main uses of this technique:

- Proof that a statement with an existential quantifier is true
- And disproof by counterexample: this is a proof that a statement with a universal quantifier, is false

Example 1

Statement: "There is a prime number between 45 and 54"
Proof: Search for an object: we examine one by one, the numbers between 45 and 54 , until a prime is found. If no prime were found, the statement would be false.

Number	Is it prime?
45	No, because it is divisible by 5
46	No, because is divisible by 2
47	Yes, 47 is divisible only by 1 and 47

Conclusion: the statement is true (no need to check the rest of the numbers from 48 to 54)

Note the universal quantifier: "For all a, b, and d integer"
 Example 2

Statement: "If $d \mid a \cdot b$ then $d \mid a$ or $d \mid b "$

Example 2

Statement: "If $d \mid a \cdot b$ then $d \mid a$ or $d \mid b "$ Proof: By counterexample.

1. Let $\mathrm{d}=6, \mathrm{a}=2$ and $\mathrm{b}=3$
2. Then, $a \cdot b=6$ and thus, $d \mid a \cdot b$
3. But $d=6$ does not divide $a=2$, and
4. $d=6$ does not divide $b=3$

Therefore, the statement is false

Example 3

Statement: "Let m and n be integers. Then, there is no integer k such that

$$
(3 m+2)(3 n+2)=3 k+2^{\prime \prime}
$$

Example 3

Statement: "Let m and n be integers. Then, there is no integer k such that

$$
(3 m+2)(3 n+2)=3 k+2^{\prime \prime}
$$

Let's parse it (don't forget the quantifiers)
$A(m, n): " m$ and n are integers" and $B(m, n, k): "(3 m+2)(3 n+2)=3 k+2$ "
Statement:
(For all m, n) A(m, n) (For all k) Not B(m,n, k)

Example 3

As suspected, this is not an implication. So, neither a direct nor a contrapositive proof is possible
Also, the statement is "negative" in the sense that ensures that a property is not possible.
This suggest a contradiction: What is wrong if the property is possible?

Negation of the statement: (the property is true)
(There are m, n) $A(m, n)$ (There is k) $B(m, n, k)$

The negation of the statement implies a false statement

Proof:

1. By hypothesis: m, n, and k are integers
2. $(3 m+2)(3 n+2)=9 m n+6(m+n)+4=3(3 m n+$ $2(m+n))+4$
3. It follows that $3(3 m n+2(m+n))+4=3$ 依 +2
4. And thus, $k=3 m n+2(m+n)-2 / 3$
5. So, there is an integer that is equal to the sum of an integer and a negative fraction

Example 4

Statement: "The sum of an even number and an odd number is always odd"

Example 4

Statement: "The sum of an even number and an odd number is always odd"

Let's rephrase it:
"If x is even and y is odd, then $x+y$ is odd"
Makes sense?
Yes, indeed. So, the statement is an implication. And the proof is direct

Example 4

Proof:

1. Since x is even, then $x=2 k$, for some natural k.
2. Since y is odd, then $y=2 q+1$, for some natural q.
3. Thus, $x+y=2 k+2 q+1=2(k+q)+1$.
4. Since $(k+q)$ is a natural number, $x+y$ is an odd number.

Example 5: just another direct proof

Statement: "If d | $\mathrm{a}+\mathrm{b})$ and $\mathrm{d} \mid \mathrm{a}$, then $\mathrm{d} \mid \mathrm{b}$ "

There is no doubt: THIS
IS AN IMPLICATION, but...

Example 5: just another direct proof

Statement: "If $\mathrm{d} \mid(\mathrm{a}+\mathrm{b})$ and $\mathrm{d} \mid \mathrm{a}$, then $\mathrm{d} \mid \mathrm{b}$ " Be careful: The hypothesis is "d| $(a+b)$ and $d \mid a$ ". Proof: Direct.

1. Since $d \mid(a+b), k \cdot d=a+b$, for some integer k.
2. Since $d \mid a, q \cdot d=a$, for some integer q.
3. Thus, $k \cdot d=a+b=q \cdot d+b$.
4. And therefore, $(k-q) \cdot d=b$.
5. Since $\mathrm{k}-\mathrm{q}$ is an integer, d divides b .

Example 6

Statement: " $\mathrm{m} \mid \mathrm{n}$ and $\mathrm{n} \mid \mathrm{m}$ if and only if $\mathrm{n}=\mathrm{m}$ or $\mathrm{n}=-\mathrm{m}$."

Example 6

Statement: " $m \mid n$ and $n \mid m$ if and only if $n=m$ or $\mathrm{n}=-\mathrm{m}$."
Recall that: As all if and only if statement, this statement consists of two implications:
(a) "If $m \mid n$ and $n \mid m$ then, $n=m$ or $n=-m$ "
(b) "If $n=m$ or $n=-m$ then, $m \mid n$ and $n \mid m$ " We will prove them separately.

Statement (a)

Proof: direct.

1. The hypothesis is: " $m \mid n$ and $n \mid m$ ". Therefore,
2. $\mathrm{k} \cdot \mathrm{m}=\mathrm{n}$ and $\mathrm{q} \cdot \mathrm{n}=\mathrm{m}$ for some integers k and q , respectively.
3. By replacing the second equation in the first one we get $k \cdot q \cdot n=n$.
4. By dividing by n we get $\mathrm{k} \cdot \mathrm{q}=1$.
5. Thus, either $\mathrm{k}=\mathrm{q}=1$ or $\mathrm{k}=\mathrm{q}=-1$. But,
6. If $k=q=1 m=n$, and if $k=q=-1$, then $m=-n$.

Statement (b)

Proof:

1. The hypothesis is now " $n=m$ or $n=-m$ ".
2. Assume first that $n=m$.
3. Then, n divides m since $1 \cdot n=m$; and
4. m divides n since $1 \cdot m=n$, as well.
5. Assume now that $\mathrm{n}=-\mathrm{m}$.
6. Then, n divides m since $-1 \cdot n=m$; and
7. m divides n since $-1 \cdot m=n$, as well.

Example 7: Recall our first proof by exhaustion

In the previous lecture we had the statement: "If n is an integer and $2 \leq n \leq 7$, then $q=n^{2}+2$ is not divisible by 4 ", which we proved to be true by exhaustion, using the table:

n	q	Divisible by 4?
2	6	No
3	11	No
4	18	No
5	27	No
6	38	No
7	51	No

Example 7 (continuation)

In the same lecture we pointed out that the statement:
"If n is an integer, then $n^{2}+2$ is not divisible by $4 "$
cannot be proved by exhaustion since it involves infinitely many objects (integers).

Next is a proof for this statement.

Example 7 (continuation)

Statement: "If n is an integer then $\mathrm{n}^{2}+2$ is not divisible by 4"
Proof: By contradiction. The negation of the statement is:
" n is an integer and $n^{2}+2$ is divisible by 4 "
This is now our hypothesis. As a handy remark, recall that since n is an integer, n may be either even or odd

Example 7: the proof

1. Assume first that n is even. Then $\mathrm{n}=2 \mathrm{~m}$, for some integer m
2. Thus, $n^{2}+2=(2 m)^{2}+2=4 m^{2}+2$
3. Since $n^{2}+2$ is divisible by 4 , we have that
4. $4 \mathrm{~m}^{2}+2=4 \mathrm{k}$, for some integer k .
5. By dividing both sides by 2 we get
6. $2 m^{2}+1=2 k, k$ and m^{2} integers.
7. So, there is an odd number that is equal to an even number (The conclusion is false)

Example 7: the proof

1. Assume now that n is odd. Then $\mathrm{n}=2 \mathrm{~m}+1$, for some integer m
2. Thus, $n^{2}+2=(2 m+1)^{2}+2=4 m^{2}+4 m+2$
3. Since $n^{2}+2$ is divisible by 4 , we have that
4. $4 m^{2}+4 m+2=4 k$, for some integer k.
5. By dividing both sides by 2 we get
6. $2 m^{2}+2 m+1=2\left(m^{2}+m\right)+1=2 k$
7. So again, there is an odd number that is equal to an even number

Summary of Lectures 3 and 4

- Revision of the concepts of integer, natural number, divisible numbers, even, odd, and prime numbers.
- Notions of mathematical statement and mathematical proofs
- Types of mathematical proofs and examples:
- Direct proofs
- Proof by exhaustion
- Use of the contrapositive form of the implication
- Proof by contradiction
- If and only if proofs
- Proofs by construction and their use as counterexamples

Exercises: Prove

1. If $(3 n)^{2}$ is even, then n is even.
2. If $d \mid(d \cdot a+b)$, then $d \mid b$.
3. $x \cdot y$ is odd if and only if x is odd and y is odd.
4. Every odd integer between 2 and 26 is either prime or the product of two primes.
5. If x and z are even numbers then, 4 divides $(x-z)^{2}$

Exercises

6. Is the statement "If d divides ($a+b$) or d divides a, then d divides b" true or false? Give a proof or provide a counterexample
7. Is the statement "If d divides $(a+b+c)$ and d divides a and b, then d divides c " true or false? Give a proof or provide a counterexample
8. Parse and prove the statement: "For each integer m there is an integer k such that $(4 m+3)^{2}=2 k+9 \prime \prime$
9. Parse and prove: "There is no integer k such that $(4 m+3)^{2}=2(k+3) "$
