ICOM 4035 — Data Structures

Dr. Manuel Rodriguez Martinez
Electrical and Computer Engineering Department
Lecture 2 — August 23, 2001

Readings

 Read Appendix D of textbook
— Primitive Arrays in C++

 Read chapter 1 of textbook

— Arrays, pointers and structures
« Do not read section 1.6.3

ICOM 4035 Dr. Manuel Rodriguez Martinez

Built-in Arrays In C++

* Arrays are one of the most fundamental constructs Iin
any programming language.

 An array is a collection on N elements of the same
data type.

o C++ array declaration:
Int size=5;
Int nums|[size];
— Array of 5 elements
— Run-time support system will provide block of contiguous
memory large enough to accommodate it.
 New C++ standard comes with new array type
— Vector — is a class with more features than basic array

ICOM 4035 Dr. Manuel Rodriguez Martinez

Built-in arrays in C++ (cont.)

e Suppose an array is initialized as follows:
for (int i=0; i < size; ++i){
numsJi]=1* 2;
}
e Result of this will be:

0 2 |4 6 8

0 1 2 3 4
e Can have default initializers

— char vowels[] = {‘a’, ‘e’, I", ‘0", ‘U’};

— Initializes the array with 5 elements, each with the
corresponding letter.

ICOM 4035 Dr. Manuel Rodriguez Martinez

Built-in arrays in C++ (cont.)

« Compiler computes the space for the array when the
default initializer is used.

e Arrays can be arguments to functions.

« A string is basically an array of char:

— char namel[] = “Manuel’;

— This is equivalent to:
« char namef] = {'M’, ‘a’, ‘n’, ‘u’, ‘e’, I', \0};
 The \0’ is the end of string character, thus the string has 7

characters, including the \0'.
— New C++ standard has a new string class with lots of
features.

ICOM 4035 Dr. Manuel Rodriguez Martinez

Multi-dimensional arrays

o Multi-dimensional arrays:

— int table[2][3] — two-dimensional array of with 2 row and 3
columns, for a total of 6 entries.
— Addressing is more complicated
» Will need to variables to index elements
— tableli,j]
» table[0,2] — access element on row 0, column 2

[0,0] | [0,1]| [0,2]

[0,1] | [0,1] | [0,1]

ICOM 4035 Dr. Manuel Rodriguez Martinez

Function Calls: Call By Value

* In call by value, the value of the parameters are copied into
temporary variables which are accessed by the statements in
the body of the function.

int sqr(int x){
return x * Xx;

3

inty =2, m=sqr(y);
— The values of the parameter cannot be modified in the body of the
function
int sqr2(int x){
X *= X;
return Xx;

}

inty =2, m=sqr2(y);
« The value of y still is 2 after the function call.

ICOM 4035 Dr. Manuel Rodriguez Martinez

Function Calls: Call ByReference

* In call by reference, a reference to the memory addresses of the
parameters is passed to the statements in the function body.
Avoids extra copy of values!

int sqr(int& x){
return x * Xx;

}

inty =2, m=sqr(y);
— The values of the parameter can be changed within the body of the
function.
int sqr2(int& x){
X*=X;
return Xx;

}

inty =2, m=sqr2(y);
 Now, the value of variable y has become 4.

ICOM 4035 Dr. Manuel Rodriguez Martinez 8

Function Calls: Call By Constant
Reference

* In call by constant reference, a constant reference to the
memory addresses of the parameters is passed to the
statements in the function body. Avoids extra copy of values!

int sgr(const int& x){
return x * Xx;

}

inty =2, m=sqr(y);
— The values of the parameter cannot be changed within the body of
the function.
int sqr2(const int& x){
X*=X;
return Xx;

}

inty =2, m=sqr2(y);
« The value of variable y remains 2 after the function call.

ICOM 4035 Dr. Manuel Rodriguez Martinez

Structures in C++

 Fundamental to build complex data structures.

* Provide the mechanism to represent multiple data
values with a single data type.

 Consider a Person data type consisting of a name
and age fields. Conceptually, we have:

name
age

Person

* |In C++ we can write:
struct person{
char[100] name;
int age;

}

ICOM 4035 Dr. Manuel Rodriguez Martinez

Using Structures in C++

 We can declare variables based on the types for the structures:
struct person{
char[100] name;
int age;

struct person student;

— Now the variable student can be used to hold information about
some person, which appear to be a student.

 Individual fields of the structure are access using the dot
notation:
— student.name — gives access to the name field
— student.age — gives access to the age field.
— Convention: <variable name>.<field name>

ICOM 4035 Dr. Manuel Rodriguez Martinez

Typedef and Structures

e |tis a good idea to create a type name for each
structure because it makes your code more readable.
— Use the typedef command for this purpose
typedef struct person{
char[100] name;
int age;
} person,;

person student;
— No need to add the word struct anywhere in the code

ICOM 4035 Dr. Manuel Rodriguez Martinez 12

Structures and functions

o Structures can be passed as arguments to functions

— Use call-by-reference!
» pass the address of the structure
— Call-by-value involves copying the whole structure into a
temporary variable, thus there is too much overhead.

— Examples
void printPerson(person & thePerson){
/Il call-by-reference © - efficient

}

void printPerson(person thePerson){
/I call-by-value ® - inefficient, too much copying

}

ICOM 4035 Dr. Manuel Rodriguez Martinez 13

Structures and Functions

e Return pointers to structures as the return value from
a function.
— Pointer created by calls to new operator.

e Returning the structure by value would be inefficient
because the whole structure must be copied to a
temporary variable.

* Do not return references or pointers to structures
local to the function because these cease to exits
upon return from the function.

— Big bad bug in your program!

ICOM 4035 Dr. Manuel Rodriguez Martinez 14

Structures and Functions (cont.)

 Examples:
person *makeNew(char[] name, int age){
person *result;
result = new person;
result->name = name;
result->age = age;
return result;

}
« This returns a pointer to the structure.

e Usually the way to go!

 The notation -> replace the dot (.) notation since now
the variable Is a pointer.

ICOM 4035 Dr. Manuel Rodriguez Martinez 15

Structures and Functions (cont.)

 This mechanism is correct but somewhat inefficient
person makeNew(char[] name, int age){
person result;
result = new person;
result.name = name,
result.age = age;
return result;

}

e The return call will cause the value of result to be
copied to another variable.

 |If the structure has many fields, this would be very
bad.

ICOM 4035 Dr. Manuel Rodriguez Martinez 16

Structures and Functions (cont.)

e This mechanism is incorrect
person *makeNew(char[] name, int age){
person result;
result = new person;
result.name = name;
result.age = age;
return &result;

}

e Variable result is destroyed upon the return call, so
Its address will go away. Thus, the pointer returned
will be a pointer to nowhere.

— This is a big bad bug!

ICOM 4035 Dr. Manuel Rodriguez Martinez

17

Rules of thumb for Structures

e Pass structures by reference, constant reference or
as pointers to the functions.

e Return structures by values if they are small.

* Return pointers to structures as result of function
calls if the structures are big.

ICOM 4035 Dr. Manuel Rodriguez Martinez 18

Pointers in C++

 What is a pointer?

— A pointer is a variables that stores the address of a memory
location of in which the data for another variable or object is
stored.

— A pointer can “point” to data that belongs to as simple
variable (e.g. an int), an array, a structure or an object.
 Why do we need pointers?

— Sometimes we cannot predict how many variables, or how
much memory we might need to run our program.

— Pointers provide the mechanism to allocate and deallocate
memory in a dynamic fashion.

e Are we going to use pointers a lot in this course?
— Yes.

ICOM 4035 Dr. Manuel Rodriguez Martinez

19

How big are pointers?

« All pointer are of the same size, since their value is
an integer number that represents a memory location
(a memory address).

e The size of a pointer will depend on the architecture
of the underlying computer.

o A 32-bit architecture like Intel Pentium Il has pointers
of 32-bits (4-bytes).

o A 64-Dbit architecture like Sun Ultra SPARC has
pointers of 64-bits (8-bytes).

* Typically the name of the locations addressed by
pointers are termed “words”.

ICOM 4035 Dr. Manuel Rodriguez Martinez 20

Words? What are Words?

 Words are the minimal units of memory that the CPU can
retrieve from the pool of bytes available in main memory.
 Why is this thing done?

— Because it is inefficient for the CPU to be interrupted to bring just 1-
byte. Therefore, computer architects and engineers came up with
designs in which bytes were fetched from memory in groups. These
groups are called words.

— A 32-Dbit architecture brings bytes in groups of 4.

— A 64-Dbit architecture brings bytes in groups of 8.

 Then, why can we have things like char, and short which are
smaller than words?

— The run-time system takes care of hiding the memory alignment
from the programmer.

— Structures, however, bring this ugly issue to the surface...

ICOM 4035 Dr. Manuel Rodriguez Martinez 21

Declaring pointer variables

 To declare a pointer variable, you must write the *
symbol before the name of the variable:
int x =10, y = 20; // regular variables
int *p; // pointer to an integer

— Initially a pointer has no defined value, thus it points to an
undefined memory location (BUG In Progress!)

— One can initialize a pointer to a given location:
int *p= &x; // gives p the address of x,
« Now p points to the location in which x is stored.

— Changes made to a location via a pointer behave like
changes made via the variable associate with the location.

*p = 40; // now variable x has value 40
— The notation *p is used to access the value pointed by p.

— In this case, the * is called the dereferencing operator.

ICOM 4035 Dr. Manuel Rodriguez Martinez 22

NULL pointer value

e Since a pointer initially points to an undefined
location, it is always a good idea to initialize it to a
well-known yet illegal memory location. This memory
location is the O address, and in C++ we have a
name for it: NULL.

e Golden Rule of Pointers:

— If you don’t know what address to give a pointer at the
moment of declaring it, then initialize it to NULL.

— Example:
int x =10, y = 20;
int *p = NULL; // safest thing on the planet

ICOM 4035 Dr. Manuel Rodriguez Martinez 23

Memory allocation with new

e To allocate a well-known and valid memory location

10 a pointer, you must use the new operator.
int x =10, y = 20;
int *p = NULL;
P = new int;
*n = x +y; // gives *p the value 30

— It is also possible to initialize the value of the location pointed
to by the pointer via the new operator:

p =new int (17);
» This statement make *p equal to 17.

ICOM 4035 Dr. Manuel Rodriguez Martinez 24

Memory model: p vs. *p

Remember that the value of the pointer is a memory

location. The value of the “thing” pointed to by the
pointer is the value stored at that memory location.

In our example, p is a memory location, and *p is the

value stored at the location pointed to by p.

(&x) 2000
(&y) 2004

Memory
addresses— g, 2012

T

2020

'\
Yy =20 «_|
- —Values
0 = 2020 « In memory
=30 «

ICOM 4035 Dr. Manuel Rodriguez Martinez 25

