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Readings

 Read Appendix D of textbook
— Primitive Arrays in C++

 Read chapter 1 of textbook

— Arrays, pointers and structures
« Do not read section 1.6.3
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Built-in Arrays In C++

* Arrays are one of the most fundamental constructs Iin
any programming language.

 An array is a collection on N elements of the same
data type.

o C++ array declaration:
Int size=5;
Int nums|[size];
— Array of 5 elements
— Run-time support system will provide block of contiguous
memory large enough to accommodate it.
 New C++ standard comes with new array type
— Vector — is a class with more features than basic array
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Built-in arrays in C++ (cont.)

e Suppose an array is initialized as follows:
for (int i=0; i < size; ++i){
numsJi]=1* 2;
}
e Result of this will be:

0 2 |4 6 8

0 1 2 3 4
e Can have default initializers

— char vowels[] = {‘a’, ‘e’, I", ‘0", ‘U’};

— Initializes the array with 5 elements, each with the
corresponding letter.
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Built-in arrays in C++ (cont.)

« Compiler computes the space for the array when the
default initializer is used.

e Arrays can be arguments to functions.

« A string is basically an array of char:

— char namel[] = “Manuel’;

— This is equivalent to:
« char namef] = {'M’, ‘a’, ‘n’, ‘u’, ‘e’, I', \0};
 The \0’ is the end of string character, thus the string has 7

characters, including the \0'.
— New C++ standard has a new string class with lots of
features.
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Multi-dimensional arrays

o Multi-dimensional arrays:

— int table[2][3] — two-dimensional array of with 2 row and 3
columns, for a total of 6 entries.
— Addressing is more complicated
» Will need to variables to index elements
— tableli,j]
» table[0,2] — access element on row 0, column 2

[0,0] | [0,1]| [0,2]

[0,1] | [0,1] | [0,1]
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Function Calls: Call By Value

* In call by value, the value of the parameters are copied into
temporary variables which are accessed by the statements in
the body of the function.

int sqr(int x){
return x * Xx;

3

inty =2, m=sqr(y);
— The values of the parameter cannot be modified in the body of the
function
int sqr2(int x){
X *= X;
return Xx;

}

inty =2, m=sqr2(y);
« The value of y still is 2 after the function call.
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Function Calls: Call ByReference

* In call by reference, a reference to the memory addresses of the
parameters is passed to the statements in the function body.
Avoids extra copy of values!

int sqr(int& x){
return x * Xx;

}

inty =2, m=sqr(y);
— The values of the parameter can be changed within the body of the
function.
int sqr2(int& x){
X*=X;
return Xx;

}

inty =2, m=sqr2(y);
 Now, the value of variable y has become 4.
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Function Calls: Call By Constant
Reference

* In call by constant reference, a constant reference to the
memory addresses of the parameters is passed to the
statements in the function body. Avoids extra copy of values!

int sgr(const int& x){
return x * Xx;

}

inty =2, m=sqr(y);
— The values of the parameter cannot be changed within the body of
the function.
int sqr2(const int& x){
X*=X;
return Xx;

}

inty =2, m=sqr2(y);
« The value of variable y remains 2 after the function call.
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Structures in C++

 Fundamental to build complex data structures.

* Provide the mechanism to represent multiple data
values with a single data type.

 Consider a Person data type consisting of a name
and age fields. Conceptually, we have:

name
age

Person

* |In C++ we can write:
struct person{
char[100] name;
int age;

}
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Using Structures in C++

 We can declare variables based on the types for the structures:
struct person{
char[100] name;
int age;

struct person student;

— Now the variable student can be used to hold information about
some person, which appear to be a student.

 Individual fields of the structure are access using the dot
notation:
— student.name — gives access to the name field
— student.age — gives access to the age field.
— Convention: <variable name>.<field name>
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Typedef and Structures

e |tis a good idea to create a type name for each
structure because it makes your code more readable.
— Use the typedef command for this purpose
typedef struct person{
char[100] name;
int age;
} person,;

person student;
— No need to add the word struct anywhere in the code
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Structures and functions

o Structures can be passed as arguments to functions

— Use call-by-reference!
» pass the address of the structure
— Call-by-value involves copying the whole structure into a
temporary variable, thus there is too much overhead.

— Examples
void printPerson(person & thePerson){
/Il call-by-reference © - efficient

}

void printPerson(person thePerson){
/I call-by-value ® - inefficient, too much copying

}
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Structures and Functions

e Return pointers to structures as the return value from
a function.
— Pointer created by calls to new operator.

e Returning the structure by value would be inefficient
because the whole structure must be copied to a
temporary variable.

* Do not return references or pointers to structures
local to the function because these cease to exits
upon return from the function.

— Big bad bug in your program!
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Structures and Functions (cont.)

 Examples:
person *makeNew(char[] name, int age){
person *result;
result = new person;
result->name = name;
result->age = age;
return result;

}
« This returns a pointer to the structure.

e Usually the way to go!

 The notation -> replace the dot (.) notation since now
the variable Is a pointer.
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Structures and Functions (cont.)

 This mechanism is correct but somewhat inefficient
person makeNew(char[] name, int age){
person result;
result = new person;
result.name = name,
result.age = age;
return result;

}

e The return call will cause the value of result to be
copied to another variable.

 |If the structure has many fields, this would be very
bad.
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Structures and Functions (cont.)

e This mechanism is incorrect
person *makeNew(char[] name, int age){
person result;
result = new person;
result.name = name;
result.age = age;
return &result;

}

e Variable result is destroyed upon the return call, so
Its address will go away. Thus, the pointer returned
will be a pointer to nowhere.

— This is a big bad bug!
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Rules of thumb for Structures

e Pass structures by reference, constant reference or
as pointers to the functions.

e Return structures by values if they are small.

* Return pointers to structures as result of function
calls if the structures are big.
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Pointers in C++

 What is a pointer?

— A pointer is a variables that stores the address of a memory
location of in which the data for another variable or object is
stored.

— A pointer can “point” to data that belongs to as simple
variable (e.g. an int), an array, a structure or an object.
 Why do we need pointers?

— Sometimes we cannot predict how many variables, or how
much memory we might need to run our program.

— Pointers provide the mechanism to allocate and deallocate
memory in a dynamic fashion.

e Are we going to use pointers a lot in this course?
— Yes.
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How big are pointers?

« All pointer are of the same size, since their value is
an integer number that represents a memory location
(a memory address).

e The size of a pointer will depend on the architecture
of the underlying computer.

o A 32-bit architecture like Intel Pentium Il has pointers
of 32-bits (4-bytes).

o A 64-Dbit architecture like Sun Ultra SPARC has
pointers of 64-bits (8-bytes).

* Typically the name of the locations addressed by
pointers are termed “words”.
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Words? What are Words?

 Words are the minimal units of memory that the CPU can
retrieve from the pool of bytes available in main memory.
 Why is this thing done?

— Because it is inefficient for the CPU to be interrupted to bring just 1-
byte. Therefore, computer architects and engineers came up with
designs in which bytes were fetched from memory in groups. These
groups are called words.

— A 32-Dbit architecture brings bytes in groups of 4.

— A 64-Dbit architecture brings bytes in groups of 8.

 Then, why can we have things like char, and short which are
smaller than words?

— The run-time system takes care of hiding the memory alignment
from the programmer.

— Structures, however, bring this ugly issue to the surface...
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Declaring pointer variables

 To declare a pointer variable, you must write the *
symbol before the name of the variable:
int x =10, y = 20; // regular variables
int *p; // pointer to an integer

— Initially a pointer has no defined value, thus it points to an
undefined memory location (BUG In Progress!)

— One can initialize a pointer to a given location:
int *p= &x; // gives p the address of x,
« Now p points to the location in which x is stored.

— Changes made to a location via a pointer behave like
changes made via the variable associate with the location.

*p = 40; // now variable x has value 40
— The notation *p is used to access the value pointed by p.

— In this case, the * is called the dereferencing operator.
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NULL pointer value

e Since a pointer initially points to an undefined
location, it is always a good idea to initialize it to a
well-known yet illegal memory location. This memory
location is the O address, and in C++ we have a
name for it: NULL.

e Golden Rule of Pointers:

— If you don’t know what address to give a pointer at the
moment of declaring it, then initialize it to NULL.

— Example:
int x =10, y = 20;
int *p = NULL; // safest thing on the planet
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Memory allocation with new

e To allocate a well-known and valid memory location

10 a pointer, you must use the new operator.
int x =10, y = 20;
int *p = NULL;
P = new int;
*n = x +y; // gives *p the value 30

— It is also possible to initialize the value of the location pointed
to by the pointer via the new operator:

p =new int (17);
» This statement make *p equal to 17.
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Memory model: p vs. *p

Remember that the value of the pointer is a memory

location. The value of the “thing” pointed to by the
pointer is the value stored at that memory location.

In our example, p is a memory location, and *p is the

value stored at the location pointed to by p.

(&x) 2000
(&y) 2004

Memory
addresses— g, 2012

T

2020

'\
Yy =20 «_|
- —Values
0 = 2020 « In memory
=30 «

ICOM 4035 Dr. Manuel Rodriguez Martinez 25



