
ICOM 4035 ICOM 4035 –– Data StructuresData Structures

Dr. Manuel Rodríguez Martínez

Electrical and Computer Engineering Department

Lecture 2 – August 23, 2001

ICOM 4035 Dr. Manuel Rodriguez Martinez 2

ReadingsReadings

• Read Appendix D of textbook
– Primitive Arrays in C++

• Read chapter 1 of textbook
– Arrays, pointers and structures

• Do not read section 1.6.3

ICOM 4035 Dr. Manuel Rodriguez Martinez 3

BuiltBuilt--in Arrays in C++in Arrays in C++

• Arrays are one of the most fundamental constructs in
any programming language.

• An array is a collection on N elements of the same
data type.

• C++ array declaration:
int size=5;

int nums[size];

– Array of 5 elements

– Run-time support system will provide block of contiguous
memory large enough to accommodate it.

• New C++ standard comes with new array type
– Vector – is a class with more features than basic array

ICOM 4035 Dr. Manuel Rodriguez Martinez 4

BuiltBuilt--in arrays in C++ (cont.)in arrays in C++ (cont.)

• Suppose an array is initialized as follows:
for (int i=0; i < size; ++i){

nums[i]= i * 2;
}

• Result of this will be:

• Can have default initializers
– char vowels[] = {‘a’, ‘e’, ‘i’, ‘o’, ‘u’};
– Initializes the array with 5 elements, each with the

corresponding letter.

0 2 4 6 8

0 1 2 3 4

ICOM 4035 Dr. Manuel Rodriguez Martinez 5

BuiltBuilt--in arrays in C++ (cont.)in arrays in C++ (cont.)

• Compiler computes the space for the array when the
default initializer is used.

• Arrays can be arguments to functions.

• A string is basically an array of char:
– char name[] = “Manuel”;

– This is equivalent to:
• char name[] = {‘M’, ‘a’, ‘n’, ‘u’, ‘e’, ‘l’, ‘\0’};

• The ‘\0’ is the end of string character, thus the string has 7
characters, including the ‘\0’.

– New C++ standard has a new string class with lots of
features.

ICOM 4035 Dr. Manuel Rodriguez Martinez 6

MultiMulti--dimensional arraysdimensional arrays

• Multi-dimensional arrays:
– int table[2][3] – two-dimensional array of with 2 row and 3

columns, for a total of 6 entries.

– Addressing is more complicated
• Will need to variables to index elements

– table[i,j]

• table[0,2] – access element on row 0, column 2

[0,0] [0,1] [0,2]

[0,1] [0,1] [0,1]

ICOM 4035 Dr. Manuel Rodriguez Martinez 7

Function Calls: Call By ValueFunction Calls: Call By Value

• In call by value, the value of the parameters are copied into
temporary variables which are accessed by the statements in
the body of the function.

int sqr(int x){
return x * x;

};
. . .
int y = 2, m = sqr(y);

– The values of the parameter cannot be modified in the body of the
function

int sqr2(int x){
x *= x;
return x;

}
…
int y = 2, m = sqr2(y);
• The value of y still is 2 after the function call.

ICOM 4035 Dr. Manuel Rodriguez Martinez 8

Function Calls: Call Function Calls: Call ByReferenceByReference

• In call by reference, a reference to the memory addresses of the
parameters is passed to the statements in the function body.
Avoids extra copy of values!

int sqr(int& x){
return x * x;

}
…
int y = 2, m = sqr(y);

– The values of the parameter can be changed within the body of the
function.

int sqr2(int& x){
x*=x;
return x;

}
…
int y = 2, m = sqr2(y);
• Now, the value of variable y has become 4.

ICOM 4035 Dr. Manuel Rodriguez Martinez 9

Function Calls: Call By Constant Function Calls: Call By Constant
ReferenceReference
• In call by constant reference, a constant reference to the

memory addresses of the parameters is passed to the
statements in the function body. Avoids extra copy of values!

int sqr(const int& x){
return x * x;

}
…
int y = 2, m = sqr(y);

– The values of the parameter cannot be changed within the body of
the function.

int sqr2(const int& x){
x*=x;
return x;

}
…
int y = 2, m = sqr2(y);
• The value of variable y remains 2 after the function call.

ICOM 4035 Dr. Manuel Rodriguez Martinez 10

Structures in C++Structures in C++

• Fundamental to build complex data structures.
• Provide the mechanism to represent multiple data

values with a single data type.
• Consider a Person data type consisting of a name

and age fields. Conceptually, we have:

• In C++ we can write:
struct person{

char[100] name;
int age;

}

name

agePerson

ICOM 4035 Dr. Manuel Rodriguez Martinez 11

Using Structures in C++Using Structures in C++

• We can declare variables based on the types for the structures:
struct person{

char[100] name;

int age;

}

struct person student;

– Now the variable student can be used to hold information about
some person, which appear to be a student.

• Individual fields of the structure are access using the dot
notation:
– student.name – gives access to the name field

– student.age – gives access to the age field.

– Convention: <variable name>.<field name>

ICOM 4035 Dr. Manuel Rodriguez Martinez 12

Typedef Typedef and Structuresand Structures

• It is a good idea to create a type name for each
structure because it makes your code more readable.
– Use the typedef command for this purpose

typedef struct person{

char[100] name;

int age;

} person;

person student;

– No need to add the word struct anywhere in the code

ICOM 4035 Dr. Manuel Rodriguez Martinez 13

Structures and functionsStructures and functions

• Structures can be passed as arguments to functions
– Use call-by-reference!

• pass the address of the structure

– Call-by-value involves copying the whole structure into a
temporary variable, thus there is too much overhead.

– Examples
void printPerson(person & thePerson){

// call-by-reference ☺ - efficient
…

}

void printPerson(person thePerson){
// call-by-value L - inefficient, too much copying

}

ICOM 4035 Dr. Manuel Rodriguez Martinez 14

Structures and FunctionsStructures and Functions

• Return pointers to structures as the return value from
a function.
– Pointer created by calls to new operator.

• Returning the structure by value would be inefficient
because the whole structure must be copied to a
temporary variable.

• Do not return references or pointers to structures
local to the function because these cease to exits
upon return from the function.
– Big bad bug in your program!

ICOM 4035 Dr. Manuel Rodriguez Martinez 15

Structures and Functions (cont.)Structures and Functions (cont.)

• Examples:
person *makeNew(char[] name, int age){

person *result;

result = new person;

result->name = name;

result->age = age;

return result;

}

• This returns a pointer to the structure.

• Usually the way to go!

• The notation -> replace the dot (.) notation since now
the variable is a pointer.

ICOM 4035 Dr. Manuel Rodriguez Martinez 16

Structures and Functions (cont.)Structures and Functions (cont.)

• This mechanism is correct but somewhat inefficient
person makeNew(char[] name, int age){

person result;

result = new person;

result.name = name;

result.age = age;

return result;

}

• The return call will cause the value of result to be
copied to another variable.

• If the structure has many fields, this would be very
bad.

ICOM 4035 Dr. Manuel Rodriguez Martinez 17

Structures and Functions (cont.)Structures and Functions (cont.)

• This mechanism is incorrect
person *makeNew(char[] name, int age){

person result;

result = new person;

result.name = name;

result.age = age;

return &result;

}

• Variable result is destroyed upon the return call, so
its address will go away. Thus, the pointer returned
will be a pointer to nowhere.
– This is a big bad bug!

ICOM 4035 Dr. Manuel Rodriguez Martinez 18

Rules of thumb for StructuresRules of thumb for Structures

• Pass structures by reference, constant reference or
as pointers to the functions.

• Return structures by values if they are small.

• Return pointers to structures as result of function
calls if the structures are big.

ICOM 4035 Dr. Manuel Rodriguez Martinez 19

Pointers in C++Pointers in C++

• What is a pointer?
– A pointer is a variables that stores the address of a memory

location of in which the data for another variable or object is
stored.

– A pointer can “point” to data that belongs to as simple
variable (e.g. an int), an array, a structure or an object.

• Why do we need pointers?
– Sometimes we cannot predict how many variables, or how

much memory we might need to run our program.

– Pointers provide the mechanism to allocate and deallocate
memory in a dynamic fashion.

• Are we going to use pointers a lot in this course?
– Yes.

ICOM 4035 Dr. Manuel Rodriguez Martinez 20

How big are pointers?How big are pointers?

• All pointer are of the same size, since their value is
an integer number that represents a memory location
(a memory address).

• The size of a pointer will depend on the architecture
of the underlying computer.

• A 32-bit architecture like Intel Pentium II has pointers
of 32-bits (4-bytes).

• A 64-bit architecture like Sun Ultra SPARC has
pointers of 64-bits (8-bytes).

• Typically the name of the locations addressed by
pointers are termed “words”.

ICOM 4035 Dr. Manuel Rodriguez Martinez 21

Words? What are Words?Words? What are Words?

• Words are the minimal units of memory that the CPU can
retrieve from the pool of bytes available in main memory.

• Why is this thing done?
– Because it is inefficient for the CPU to be interrupted to bring just 1-

byte. Therefore, computer architects and engineers came up with
designs in which bytes were fetched from memory in groups. These
groups are called words.

– A 32-bit architecture brings bytes in groups of 4.

– A 64-bit architecture brings bytes in groups of 8.

• Then, why can we have things like char, and short which are
smaller than words?
– The run-time system takes care of hiding the memory alignment

from the programmer.

– Structures, however, bring this ugly issue to the surface…

ICOM 4035 Dr. Manuel Rodriguez Martinez 22

Declaring pointer variablesDeclaring pointer variables

• To declare a pointer variable, you must write the *
symbol before the name of the variable:

int x = 10, y = 20; // regular variables
int *p; // pointer to an integer

– Initially a pointer has no defined value, thus it points to an
undefined memory location (BUG In Progress!)

– One can initialize a pointer to a given location:
int *p= &x; // gives p the address of x,
• Now p points to the location in which x is stored.

– Changes made to a location via a pointer behave like
changes made via the variable associate with the location.

*p = 40; // now variable x has value 40

– The notation *p is used to access the value pointed by p.
– In this case, the * is called the dereferencing operator.

ICOM 4035 Dr. Manuel Rodriguez Martinez 23

NULL pointer valueNULL pointer value

• Since a pointer initially points to an undefined
location, it is always a good idea to initialize it to a
well-known yet illegal memory location. This memory
location is the 0 address, and in C++ we have a
name for it: NULL.

• Golden Rule of Pointers:
– If you don’t know what address to give a pointer at the

moment of declaring it, then initialize it to NULL.

– Example:
int x = 10, y = 20;

int *p = NULL; // safest thing on the planet

ICOM 4035 Dr. Manuel Rodriguez Martinez 24

Memory allocation with newMemory allocation with new

• To allocate a well-known and valid memory location
to a pointer, you must use the new operator.

int x = 10, y = 20;

int *p = NULL;

p = new int;

*p = x + y; // gives *p the value 30

– It is also possible to initialize the value of the location pointed
to by the pointer via the new operator:

p = new int (17);

• This statement make *p equal to 17.

ICOM 4035 Dr. Manuel Rodriguez Martinez 25

Memory model: p vs. *pMemory model: p vs. *p

• Remember that the value of the pointer is a memory
location. The value of the “thing” pointed to by the
pointer is the value stored at that memory location.

• In our example, p is a memory location, and *p is the
value stored at the location pointed to by p.

x = 10

y = 20

p = 2020

*p = 30

(&x) 2000

(&y) 2004

(&p) 2012

2020

Memory
addresses

Values
In memory

