
ICOM 4035 ICOM 4035 –– Data StructuresData Structures

Dr. Manuel Rodríguez Martínez

Electrical and Computer Engineering Department

Lecture 3 – August 28, 2001

ICOM 4035 Dr. Manuel Rodriguez Martinez 2

ReadingsReadings

• Read chapter 1 of textbook
– Arrays, pointers and structures

• Do not read section 1.6.3

ICOM 4035 Dr. Manuel Rodriguez Martinez 3

More on pointersMore on pointers

• Suppose we have the declaration
int x;

– Then the following is a legal pointer declaration;

int *ptr = &x;

– Now ptr points to the memory location allocated for variable x.

– The following is illegal (compiler error!):

int *ptr = x;

– Variable x is not a pointer, its value is an integer number not a
memory location. C++ will enforce it. C won’t.

– The following is semantically incorrect but C++ compiler won’t
catch it

int ptr;

*ptr = x;

– ptr has no memory allocated for it!

ICOM 4035 Dr. Manuel Rodriguez Martinez 4

Pointer dePointer de--reference reference

• The * gives the contents of the memory location
pointed to by a pointer.

• It is a way to access the storage area
– Behaves like a regular variable of the type associated with

the pointer.

– Example:
int x= 2;

int *ptr1 = &x, ptr2 = NULL;

*ptr1 = 3; // now x becomes 3

ptr2 = new int(10);

cout << (*ptr1); // prints out 3

cout << (*ptr2); // prints out 10

ICOM 4035 Dr. Manuel Rodriguez Martinez 5

Pointers and operator precedencePointers and operator precedence

• Must consider operator precedence when using pointers.
– Example 1:

int ptr = new int(10);

*ptr += 20;

• This is equivalent to:

*ptr = *ptr + 20;

• * has higher precedence than +=

– Example 2:
int *ptr = new int(10);

*ptr++;

• This is equivalent to:

ptr++; // change pointer address!!!

*ptr; // might give run time error

• ++ has higher precedence than *

ICOM 4035 Dr. Manuel Rodriguez Martinez 6

Pointers and arraysPointers and arrays

• A built-in array is just a pointer!

• These are equivalent:
int nums1[5] ; // arrays of 10 elements

int *nums2=NULL;

nums2 = new int[5]; // array of 10 elements;

• Same access patterns:
for (int i=0; i < n; ++i){

nums1[i] = 1;

nums2[i] = 2;

}

ICOM 4035 Dr. Manuel Rodriguez Martinez 7

Dynamic Memory AllocationDynamic Memory Allocation

• Local variables and parameters used in functions are
cleanup by the run-time system.

• Memory is allocated using the new operator
– This memory space will not be cleanup automatically by the

run-time.

– If we forget to “recycle” unused memory space, we get
memory leaks.

• Memory space that cannot be used. It is basically wasted!

• Programs can crash due to lack of memory associated with
memory leaks.

• Delete operator is used to “recycle” memory space.
– Apply it to pointer variables

ICOM 4035 Dr. Manuel Rodriguez Martinez 8

Example of memory allocationExample of memory allocation

• Add random numbers
int *nums = NULL;

int size = 10;

int seed = random(100); // random number between 0 and 100

for (int i=0; i < size; ++i){

nums[i] = seed++;

}

cout << sum(nums);

delete [] nums;

• Apply delete to single value or arrays:
– Single values: delete ptr;

– Array values: delete [] nums;

ICOM 4035 Dr. Manuel Rodriguez Martinez 9

Stale pointer problemStale pointer problem

• Consider the following:
int *nums1=NULL, *nums2 = NULL;

int size = 100, i=0;

nums1 = new int[size];

nums2 = nums1;

for (i=0; i < size; ++i){

nums1[I] = i;

}

delete [] nums2;

cout << nums1[0]; // should be run-time error (not in g++ ???!!!)

– By deleteing nums2, we also deleted nums1 (became stale)
• Common problem when a pointer parameter is “accidentally”

recycled with delete

…

nums1

nums2

ICOM 4035 Dr. Manuel Rodriguez Martinez 10

Pointers to structuresPointers to structures

• Consider the following structure
typedef struct student {

string name; // name is an object
int age;

}student;
– We can declare a pointer to student struct as follow
student *std = NULL;
std = new student;

• To access the individual fields you use -> operator:
– std->name = “Jose”; // access to name field
– std->age = 25; // access to age field
– Alternative is annoying:

• (*std).name = “Jose”; // get contents of pointer, then use dot

ICOM 4035 Dr. Manuel Rodriguez Martinez 11

Initializing fields that are pointersInitializing fields that are pointers

• If you get a structure with pointers in it, you MUST
allocate and initialize these fields.

• Example 1:
typedef struct row {

int size;

int *columns;

} row;

row theRow ;

theRow.size = 2;

theRow.columns = new int [2];

theRow.columns[0] = 1;

theRow.columns[1] = 2;

ICOM 4035 Dr. Manuel Rodriguez Martinez 12

Initializing fields that are pointersInitializing fields that are pointers

• If the you get a pointer to a structure, and the structures has
pointers in it, you MUST allocate all these pointers

• Example:
typedef struct row {

int size;

int *columns;

} row;

row *theRow;

theRow = new row;

theRow->size = 2;

theRow->columns = new int [2];

theRow->columns[0] = 1;

theRow->columns[1] = 2;

ICOM 4035 Dr. Manuel Rodriguez Martinez 13

Memory Alignment ProblemMemory Alignment Problem

• Remember that CPU must access memory based on
word boundaries.

• Suppose your computer has a 32-bit architecture.
• Consider the following declaration:

typedef struct record{
int num; // 4-byte int
char letter; // 1-byte char

} record;
– Structure has a 4 byte int field and a 1 byte char field.
– But structure size is 8 bytes!

• char field must be aligned to a 4-byte word
• Always used the sizeof() operator to estimate size of structs

and other objects!

ICOM 4035 Dr. Manuel Rodriguez Martinez 14

Memory Alignment ProblemMemory Alignment Problem

32-bit

num

letter

padding

typedef struct record{

int num; // 4-byte int

char letter; // 1-byte char

}record;

