
ICOM 4035 ICOM 4035 –– Data StructuresData Structures

Dr. Manuel Rodríguez Martínez

Electrical and Computer Engineering Department

Lecture 4 – August 30, 2001

ICOM 4035 Dr. Manuel Rodriguez Martinez 2

ReadingsReadings

• Read chapter 2 of textbook
– Objects and classes

ICOM 4035 Dr. Manuel Rodriguez Martinez 3

ObjectObject--Oriented programmingOriented programming

• Objects
– An instance of an entity of a give type

• Ex. string name;
– name represents an instance of an object of type string.

• Its has:
– Data members – variable that store some value/
– Function members – functions (called methods) that implement

the behavior of the object.

• Why do we need this?
– Information hiding

• User does not need to understand the internal details of the
data structures and objects.

– Encapsulation
• Data data and operations that affect these data into an single

entity.

ICOM 4035 Dr. Manuel Rodriguez Martinez 4

OO--O vs. procedural programmingO vs. procedural programming

• Object-Oriented
Programming:
1. Objects are treated as

basic built-in types

2. Information in an object can
be hidden from
programmer to prevent
misuse.

3. Methods associated with an
object are members of the
objects (part of its
declaration and definition).

• Procedural programming:
1. Structures are second class

entities with restriction on
their use.

2. Information in a structure is
available at any level to the
programmer.

3. Methods associated with an
structure are independently
declared and defined.

ICOM 4035 Dr. Manuel Rodriguez Martinez 5

Classes in C++Classes in C++

• Class is the mechanism to create objects.
• They represent a user-defined data type
• Unlike structures, the members (data and methods)

in a class are inaccessible to the general public
• Method Types:

– Constructors – used to initialize the data members of an
object.

– Destructors – used to cleanup the data members in an
object.

– Accessors – used to read the values of the data members in
an object.

– Mutators – methods used to change the contents of data
members (i.e. change the state of the object).

ICOM 4035 Dr. Manuel Rodriguez Martinez 6

Example: Complex NumbersExample: Complex Numbers

• A complex number c has the form
C = a + bi

– Where, a is the real part of the complex number, and bi is
the imaginary part. The coefficient b is a real number, and i
is the imaginary number that represents the square root of
–1.

• Initial design sketch:

– No need to represent I!

a

b

Complex
Class

ICOM 4035 Dr. Manuel Rodriguez Martinez 7

ConstructorsConstructors

• Constructors – describes how an instance of the
class is to created.
– C++ provides default constructor that initializes members in

a language dependent form.

• Called when a variable is initialized.

• Complex number constructors:
– We need

• one that initializes the number to 0.

• one that initializes the number to a complex number based on a
real part and a complex part.

ICOM 4035 Dr. Manuel Rodriguez Martinez 8

Complex class and constructorsComplex class and constructors

class complex {
public:

// empty arguments constructor
complex(){

real_part = 0;
img_part = 0;

}
// constructor with arguments for complex number
complex(double a, double b){

real_part = a;
img_part = b;

}
private:

double real_part; // the real part
double img_part; // the imaginary part

}

ICOM 4035 Dr. Manuel Rodriguez Martinez 9

Public vs. private membersPublic vs. private members

• Private members:
– Only accessible by the routines that are member of the

class.

– Also accessible by the “friends” of the class.

– In C++ everything is private by default.

• Public members:
– Accessible by any routine in any class or anywhere in the

program.

• Your APIs should be public, but your internal helper
routines should be private.

ICOM 4035 Dr. Manuel Rodriguez Martinez 10

Default parameters & Default parameters & initializer initializer listslists

• C++ provides mechanism to give default values to
parameters of the constructors and functions
– If the constructor is called with or more parameters not

specified, then the defaults are used

– Good way to consolidate multiple constructor declarations
into just 1.

• Initializer lists are used to specify non-default
initialization of data members.
– Avoids creation of temporary objects to initialize complex

objects.

ICOM 4035 Dr. Manuel Rodriguez Martinez 11

Complex class: a refinementComplex class: a refinement

class complex {
public:

/*
* new constructor has default parameters
* plus initializer list.
* We moved from 2 constructor into 1 that
* covers all cases.
* empty arguments constructor
*/

complex(double a = 0, double b = 0)
: real_part(a), img_part(b) {
// empty body since all
// initialization was done

}
private:

double real_part; // the real part
double img_part; // the imaginary part

}

ICOM 4035 Dr. Manuel Rodriguez Martinez 12

Accessors Accessors and and mutatorsmutators

• Accessor is a method used to inspect the state of the
object.
– Access one or more data fields but don’t change them.

– In C++ the keyword const is used at the end of method’s
parameters list to indicate that it does not changes the state
(I.e. it is an accessor)

• Mutator is a method used to change the state of the
object.
– Changes one or more data fields in the object.

• This is a good protocol to control the access to the
data members of a class.

ICOM 4035 Dr. Manuel Rodriguez Martinez 13

Complex class: refinement 2Complex class: refinement 2

• We need accessors to view:
– Real part – get_real()

– Imaginary part – get_img()

• Mutators to change:
– Real part – set_real(double r)

– Imaginary part- set_img(double i)

real_part

img_part

get_real()

get_img()

set_real()

set_img()

Complex
Class

ICOM 4035 Dr. Manuel Rodriguez Martinez 14

Complex class: refinedComplex class: refined

class complex {
public:

// constructor with default values
complex(double a = 0, double b = 0)

: real_part(a), img_part(b) {
// empty body since all
// initialization was done

}
// accessors
double get_real(){return real_part;}
double get_img(){return img_part;}
// mutators
void set_real(double real){

real_part = real;
}
void set_img(double img){

img_part = img;
}

private:
double real_part; // the real part
double img_part; // the imaginary part

}

ICOM 4035 Dr. Manuel Rodriguez Martinez 15

Class Interface and ImplementationClass Interface and Implementation

• The class interface lists the class, its data members
and its method members.
– Tells us what can be done to a given object instance

• The class implementation represents the actual code
that implements the behavior of the class as specified
in the interface.

• You should separate them in different files!
– Use .h file to put the interface
– Use .cc, .ccp or .C file to put the implementation

• Scope operator :: is used to indicate what class a method is
associated with.

• C++ convention:
– class::method
– class::datamember

ICOM 4035 Dr. Manuel Rodriguez Martinez 16

Complex class: InterfaceComplex class: Interface

#ifndef _COMPLEX_H_
#define _COMPLEX_H
class complex {

public:
// constructor with default values
complex(double a = 0, double b = 0);
// accessors
double get_real() const;
double get_img() const;

// mutators
void set_real(double real)
void set_img(double img);

private:
double real_part; // the real part
double img_part; // the imaginary part

}
#endif

complex.h
file

ICOM 4035 Dr. Manuel Rodriguez Martinez 17

Complex class: ImplementationComplex class: Implementation

#include “complex.h”

// constructor
complex::complex(double a, double b)

: real_part(a), img_part(b){
}

// accessors
double complex::get_real() const{

return real_part;
}
double complex::get_img() const{

return img_part;
}

// mutators
void complex::set_real(double real){

real_part = real;
}
void complex::set_img(double img){

img_part = img;
}

complex.cc
file

ICOM 4035 Dr. Manuel Rodriguez Martinez 18

Object declarationObject declaration

• Objects are declared like primitive types

• Examples:
– complex comp1; // initialized to complex number 0

– complex comp2 (1); // initialized to complex number 1

– complex comp3(0, 1); // initialized to complex number I

– complex comp4(5, 9); // initialized to complex number 5 +9i

ICOM 4035 Dr. Manuel Rodriguez Martinez 19

Operator overloadingOperator overloading

• Extending the types to which the built-in operator can
be applied in the program.

• Good way to make your user-defined type look like a
built-in type

• Operator to overload:
– +, -, *, /, %, +=, -=, *=, /=, %=, ++, - -, !=, ==, >, < , >=, <=, !,

|, &, , ^, ~, <<, >>

ICOM 4035 Dr. Manuel Rodriguez Martinez 20

Overloading complex: +Overloading complex: +

#ifndef _COMPLEX_H_
#define _COMPLEX_H
class complex {

public:
// constructor with default values
complex(double a = 0, double b = 0);
// accessors
double get_real() const;
double get_img() const;

// mutators
void set_real(double real)
void set_img(double img);
// math operators
complex operator+(const complex & c) const;

private:
double real_part; // the real part
double img_part; // the imaginary part

}
#endif

interface

ICOM 4035 Dr. Manuel Rodriguez Martinez 21

Overloading complex: +Overloading complex: +

complex complex::operator+(const complex & c) const{
double real, img;

real = real_part + c.get_real();
img = img_part + c.get_img();
return complex(real, img);

}
In your program you can have:

complex x (4,5), y (5);
complex z;
z = x + y; // just like built-in numbers

ICOM 4035 Dr. Manuel Rodriguez Martinez 22

DestructorDestructor

• Destructor is a method used to deallocate are
resources (I.e. pointers) that are associated with an
object.

• The destructor is called and executed when:
– The object goes out of scope

• a local variable in a function

– Operator delete is called on a pointer to an object.

• If your class allocates memory, files or any other
resources as part of the constructor or mutator, then
you must have a destructor that deallocates all of
these.

ICOM 4035 Dr. Manuel Rodriguez Martinez 23

NN--dimensional vector class:dimensional vector class:

class n_vector {
public:

n_vector();
n_vector(double points[], int dims);
~n_vector(); // destructor
// accessors
int get_dims() const;
int get_coord() const;

private:
double *coords;
int num_dims;

}

ICOM 4035 Dr. Manuel Rodriguez Martinez 24

NN--dimensional vector: constructordimensional vector: constructor

n_vector::n_vector(double points[], int dims){
if ((dims <1) || (points != NULL)){

// error, throw exception
}
num_dims = dims;
coords = new double [num_dims];
For (int i=0; i < num_dims; ++i){

coords[i] = points[i];
}

}

ICOM 4035 Dr. Manuel Rodriguez Martinez 25

NN--dimensional vector: destructordimensional vector: destructor

n_vector::~n_vector(){
delete [] coords;
num_dims = 0;

}

Deallocates the array of coordinates!

void do_something(double pts[], int n) {
n_vector v (pts, n);
…
// do something with vector v

…
// when the end of function is reached
// the destructor of v will be called to
// free the memory

}

ICOM 4035 Dr. Manuel Rodriguez Martinez 26

Copy constructorCopy constructor

• Mechanism to initialize a new object from an existing
one.

• C++ automatically gives you a default one:
– Makes a shallow copy of the objects.

• Copies the basic type by value
• Copies the pointers by simply copying the address value
• Copies the object by calling their copy constructor

• Used:
– Explicitly – ex: complex w (1, 2), u(w);
– Implicitly – to create temporary objects in call by value

• Note: If you want independent objects (no shared
references nor pointers in data member) then you
must implement a copy constructor.

ICOM 4035 Dr. Manuel Rodriguez Martinez 27

NN--dimendimen. vector: copy constructor. vector: copy constructor

n_vector::n_vector(const n_vector& v){
num_dims = v.get_dims();
coords = new double [num_dims];
for (int i=0; i < num_dims; ++i){

coords[i] = v.get_coord(i);
}

}

This process is called a deep copy of the object

ICOM 4035 Dr. Manuel Rodriguez Martinez 28

Copy assignment operatorCopy assignment operator

• Use to copy one object to another, when both objects
have already been created.

• Behavior should be the same as that of the copy
constructor.

• Example:

n_vector v (ptrs, n), z;

… // some code does stuff here.

z = v ; // have assigned v to z

ICOM 4035 Dr. Manuel Rodriguez Martinez 29

Copy assignment operatorCopy assignment operator

const n_vector& n_vector::operator=(const n_vector& v){
num_dims = v.get_dims();
coords = new double [num_dims];
for (int i=0; i < num_dims; ++i){

coords[i] = v.get_coord(i);
}

}

