

ICOM 4035 – Data Structures

Dr. Manuel Rodríguez Martínez Electrical and Computer Engineering Department Lecture 6 – September 6th, 2001

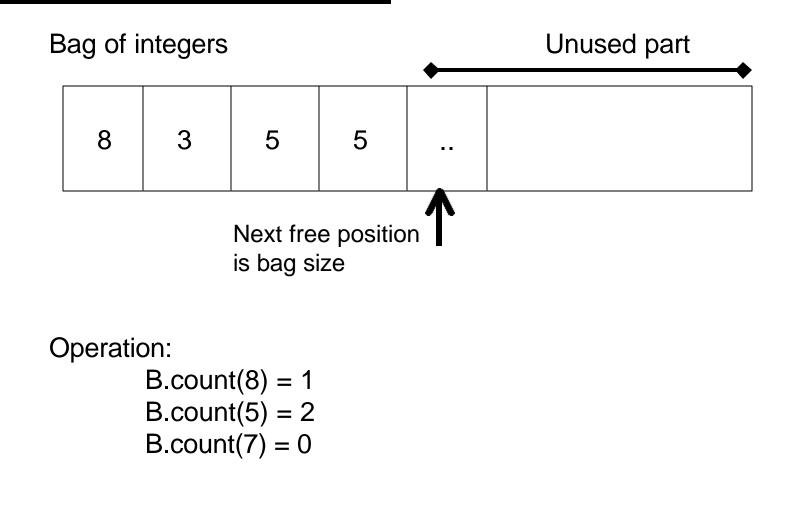
Readings

- Read Handout about Container Classes
 - Available from Engineering Reproduction Center as ICOM-4035-Manual # 2

Bag Class Container

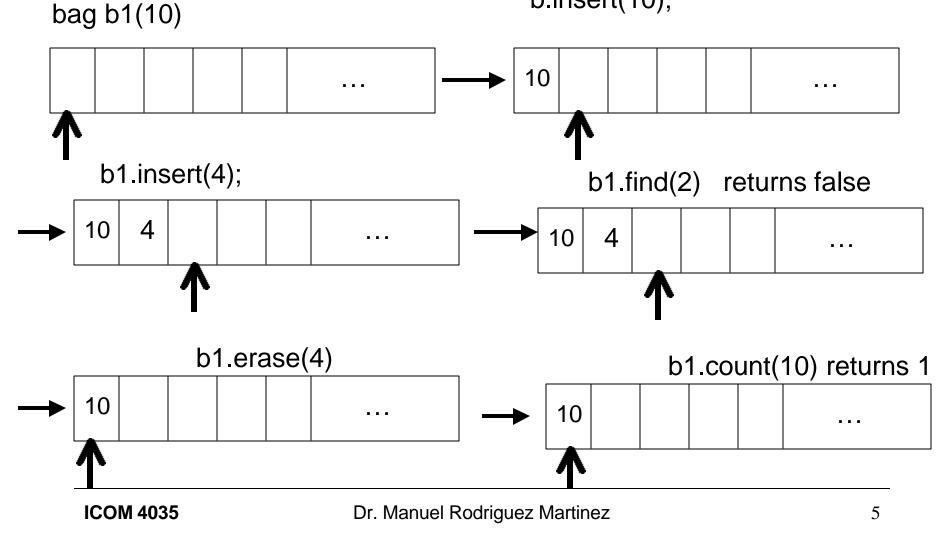
- Bag (Multi-set) is data structure used to store elements with the following semantics:
 - Copies of the same element can stored in the bag B.
 - A find operation is supported to determine if an element x is present in the bag B.
 - A count operation is supported to determine the number of instances of element x in the bag B.
 - An erase operation is supported to erase an instance of an element x in the bag B.
 - An erase all operation is supported to erase all instances of an element x in the bag B
 - A union operation is supported to concatenate the contents of two bags.
- Bags are used to keep track of things in which copies are allowed
 - Movies in a video store, letters in a name, names is class room

Bag Class Conceptual Example

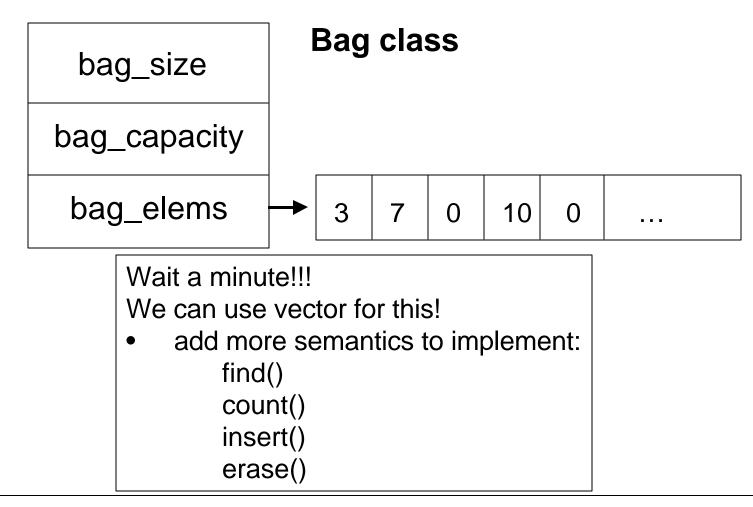


Using the Bag

b.insert(10);



Bag Class Design

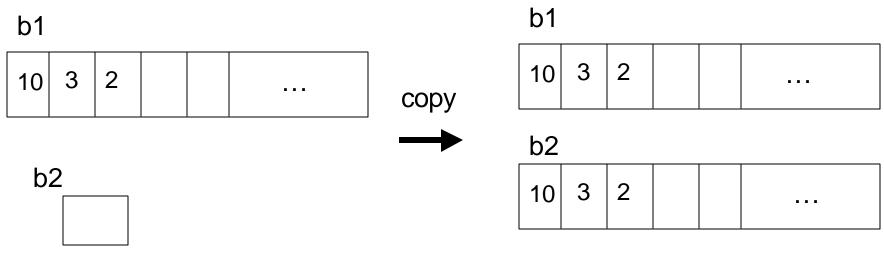


Bag Class Methods

- Constructor
 - Make an empty bag
 - Make a bag from another bag (copy constructor)
- Accessor
 - Get current size
 - Get current capacity
 - Find an element
 - Get the count of an element
- Mutators
 - Insert a new element
 - Erase one instance of element x
 - Erase all instances of element x
- Non-member
 - Addend all elements from two bags to create a new one.

Constructors and copy methods

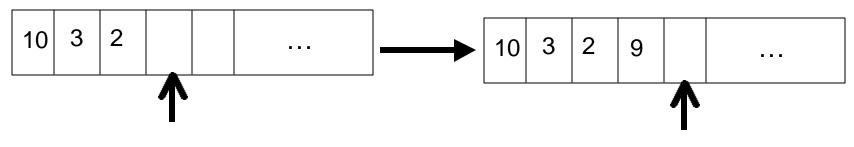
- Constructors initialize the vector stored in the bag
- Constructor with integer allocates a vector of size N
- Copy constructor and copy assignment simply call copy assignment operator on local vector using the vector of the argument bag.
 - Make an independent (deep) copy of the vectors



Simple ones ...

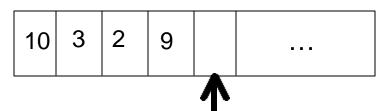
- Methods that are quite trivial
 - size() simply calls size method on vector
 - capacity() simply class capacity method on vector
 - Operator << prints the elements of the bag in the form:
 - {2345}
- Methods that are simple but tricky
 - insert push back a new element into the vector

b.insert(9)

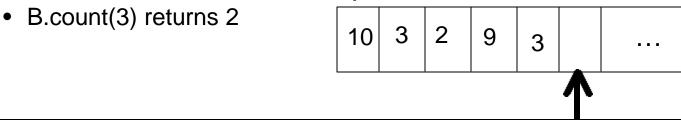


Find and count

- Find simply traverse the vector associated with the bag until it either
 - Find the element and returns true
 - Reaches the end of section in use (position size 1) and returns false
 - Ex: b.find(9) returns true

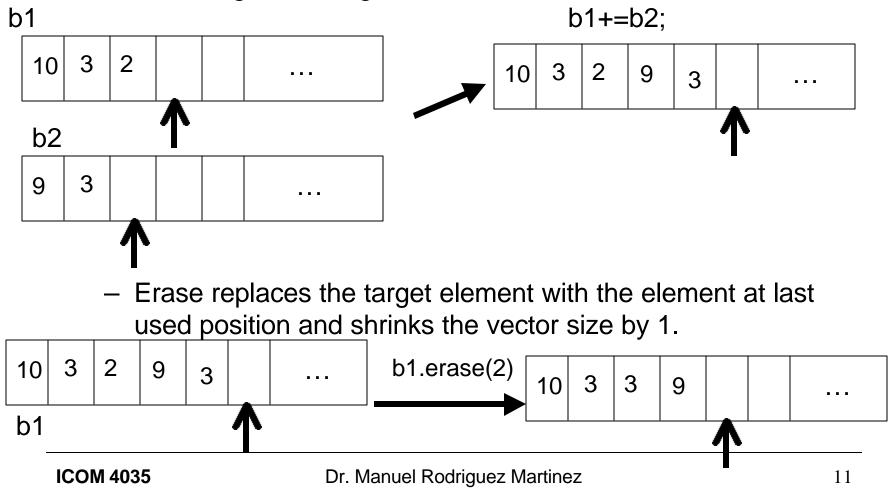


• Count traverses the array and counts the number of times it sees the element in question



More complex operators

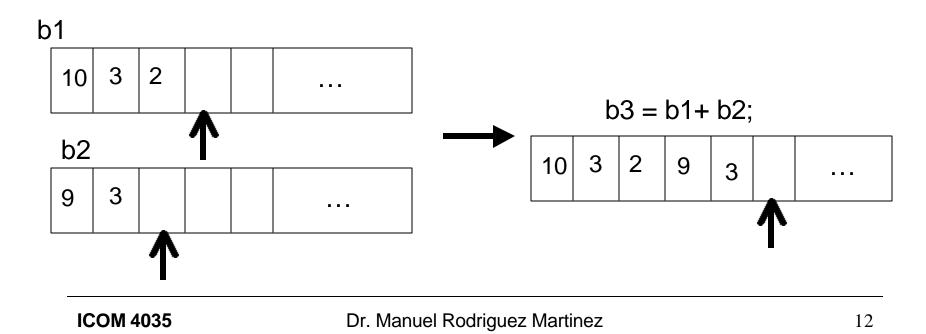
 Operator += - make a push back of all elements in the vector of the argument bag



Final ones

- Erase All simply calls erase until all copies of the element are delete
- Operator + is declared as non-meber. It creates a new bag with all elements of the two argument bags.

Implemented using copy constructor and += operator



Set Class Container

- Set is data structure used to store elements with the following semantics:
 - Only one copy of an element can be stored in the set S.
 - A find operation is supported to determine if an element x is present in the set S.
 - An erase operation is supported to erase an element x from the set
 S.
 - The following set operations are supported:
 - Union elements that appear in at least one of two sets
 - Intersection elements that are common to two sets
 - Difference elements that appear in the first set but no in the second one.
 - Sub-set determines is a set A is a subset of another set B.
- Sets are used in application in which copies are not allowed:
 - Clients in a video store, holydays in a month, social security #

On the Theory of Sets

- A set S is a collection of objects, where there are no duplicates
 - Examples
 - A = {a, b, c}
 - B = {0, 2, 4, 6, 8}
 - C = {Jose, Pedro, Ana, Luis}
- The objects that are part of a set S are called the elements of the set.
 - Notation:
 - 0 is an element of set B is written as $0 \in B$.
 - 3 is not an element of set B is written as $3 \notin B$.

Cardinality of Sets

- Sets might have
 - 0 elements called the empty set \emptyset .
 - 1 elements called a singleton
 - N elements a set of N elements (called a finite set)
 - Ex: S = {car, plane, bike}
 - $-\infty$ elements an infinite number of elements (called infinite set)
 - Integers, Real,
 - Even numbers: E = {0, 2, 4, 6, 8, 10, ...}
 - Dot notation means infinite number of elements
- The cardinality of a set is its number of elements
 - Notation: cardinality of S is denoted by |S|
 - Could be an integer number or infinity symbol ∞ .

Cardinality of Sets (cont.)

- Some examples:
 - $A = \{a, b, c\}$
 - |A| = 3
 - R set of real numbers
 - |R| = ∞
 - $E = \{0, 2, 3, 4, 6, 8, 10, \ldots\}$
 - |E| = ∞
 - \emptyset the empty set
 - |Ø|=0

Set notations and equality of Sets

- Enumeration of elements of set S
 - $A = \{a, b c\}$
 - $E = \{0, 2, 4, 6, 8, 10, \ldots\}$
- Enumeration of the properties of the elements in S
 - $E = \{x : x \text{ is an even integer}\}$
 - $E = \{x: x \in I \text{ and } x/2=0, where I is the set of integers.\}$
- Two sets are said to be equal if and if only they both have the same elements
 - $A = \{a, b, c\}, B = \{a, b, c\}, \text{ then } A = B$
 - if C = {a, b, c, d}, then A \neq C
 - Because $d \notin A$

Sets and Subsets

- Let A and B be two sets. B is said to be a subsets of A if and only if every member x of B is also a member of A
 - Notation: $B \subseteq A$
 - Examples:
 - A = {1, 2, 3, 4, 5, 6}, B = {1, 2}, then $B \subseteq A$
 - $D = \{a, e, i, o, u\}, F = \{a, e, i, o, u\}, then F \subseteq D$
 - If B is a subset of A, and B ≠A, then we call B a proper subset
 - Notation: $B \subset A$
 - A = {1, 2, 3, 4, 5, 6}, B = {1, 2}, then $B \subset A$
 - The empty set \varnothing is a subset of every set, including itself
 - $\emptyset \subseteq A$, for every set A
 - If B is not a subset of A, then we write $B \not\subset A$

Set Union

 Let A and B be two sets. Then, the union of A and B, denoted by A ∪ B is the set of all elements x such that either x ∈ A or x ∈ B.

 $- A \cup B = \{x: x \in A \text{ or } x \in B\}$

- Examples:
 - A = {10, 20 , 30, 40, 100}, B = {1,2 , 10, 20} then A \cup B = {1, 2, 10, 20, 30, 40, 100}
 - C = {Tom, Bob, Pete}, then $C \cup \emptyset = C$
 - For every set A, A \cup A = A

Set Intersection

- Let A and B be two sets. Then, the intersection of A and B, denoted by A ∩ B is the set of all elements x such that x ∈ A and x ∈ B.
 - $A \cap B = \{x: x \in A \text{ and } x \in B\}$
- Examples:
 - A = {10, 20 , 30, 40, 100}, B = {1,2 , 10, 20} then A \cap B = {10, 20}
 - Y = {red, blue, green, black}, X = {black, white}, then Y \cap X = {black}
 - E = {1, 2, 3}, M={a, b} then, E ∩ M = Ø
 - C = {Tom, Bob, Pete}, then $C \cap \emptyset = \emptyset$
- For every set A, $A \cap A = A$
- Sets A and B disjoint if and only if $A \cap B = \emptyset$
 - They have nothing in common

Set Difference

 Let A and B be two sets. Then, the difference between A and B, denoted by A - B is the set of all elements x such that x ∈ A and x ∉ B.

 $- A - B = \{x: x \in A \text{ and } x \notin B\}$

- Examples:
 - A = {10, 20 , 30, 40, 100}, B = {1,2 , 10, 20} then A B = {30, 40, 100}
 - Y = {red, blue, green, black}, X = {black, white}, then Y X = {red, blue, green}
 - $E = \{1, 2, 3\}, M = \{a, b\} \text{ then, } E M = E$
 - $C = \{Tom, Bob, Pete\}, then C \emptyset = C$
 - For every set A, A A = \emptyset