

ICOM 4035 – Data Structures

Dr. Manuel Rodríguez Martínez Electrical and Computer Engineering Department Lecture 8 – September 13, 2001

Agenda

- Project 1 is out: Algebra and Calculus on Polynomials.
 - Get the source code from class web page.
 - Due Date: 12:00 PM October 4
- Exam1 Date: 3:00PM-4:30PM, September 27, 2001
 - Topics: Arrays, structures, pointers, objects, operator overloading, constructor, copy constructors, destructors, copy assignment, vector class, bag class, set class, bitset class, Big-Oh notation.
 - Coming soon: practice problems & solutions.

Review of bags

 Trace the execution of the following operations on bag b:

> bag b(3); b.insert(10); b.insert(-2); b.insert(3); b.find(10); b.find(-1); b.erase(20);b.insert(3); b.erase(-2);

Set Class Container

- Set is data structure used to store elements with the following semantics:
 - Only one copy of an element can be stored in the set S.
 - A find operation is supported to determine if an element x is present in the set S.
 - An erase operation is supported to erase an element x from the set
 S.
 - The following set operations are supported:
 - Union elements that appear in at least one of two sets
 - Intersection elements that are common to two sets
 - Difference elements that appear in the first set but no in the second one.
 - Sub-set determines is a set A is a subset of another set B.
- Sets are used in application in which copies are not allowed:
 - Clients in a video store, holydays in a month, social security #

On the Theory of Sets

- A set S is a collection of objects, where there are no duplicates
 - Examples
 - A = {a, b, c}
 - B = {0, 2, 4, 6, 8}
 - C = {Jose, Pedro, Ana, Luis}
- The objects that are part of a set S are called the elements of the set.
 - Notation:
 - 0 is an element of set B is written as $0 \in B$.
 - 3 is not an element of set B is written as $3 \notin B$.

Cardinality of Sets

- Sets might have
 - 0 elements called the empty set \emptyset .
 - 1 elements called a singleton
 - N elements a set of N elements (called a finite set)
 - Ex: S = {car, plane, bike}
 - $-\infty$ elements an infinite number of elements (called infinite set)
 - Integers, Real,
 - Even numbers: E = {0, 2, 4, 6, 8, 10, ...}
 - Dot notation means infinite number of elements
- The cardinality of a set is its number of elements
 - Notation: cardinality of S is denoted by |S|
 - Could be an integer number or infinity symbol ∞ .

Cardinality of Sets (cont.)

- Some examples:
 - $A = \{a,b,c\}$
 - |A| = 3
 - R set of real numbers
 - |R| = ∞

$$- E = \{0, 2, 3, 4, 6, 8, 10, \ldots\}$$

- |E| = ∞
- \varnothing the empty set
 - |Ø|=0

Set notations and equality of Sets

- Enumeration of elements of set S
 - $A = \{a, b c\}$
 - E = {0, 2, 4, 6, 8, 10, ...}
- Enumeration of the properties of the elements in S
 - $E = \{x : x \text{ is an even integer}\}$
 - $E = \{x: x \in I \text{ and } x/2=0, where I is the set of integers.\}$
- Two sets are said to be equal if and if only they both have the same elements
 - $A = \{a, b, c\}, B = \{a, b, c\}, \text{ then } A = B$
 - if C = {a, b, c, d}, then A \neq C
 - Because $d \notin A$

Sets and Subsets

- Let A and B be two sets. B is said to be a subsets of A if and only if every member x of B is also a member of A
 - Notation: $B \subseteq A$
 - Examples:
 - A = {1, 2, 3, 4, 5, 6}, B = {1, 2}, then $B \subseteq A$
 - $D = \{a, e, i, o, u\}, F = \{a, e, i, o, u\}, then F \subseteq D$
 - If B is a subset of A, and B ≠A, then we call B a proper subset
 - Notation: $B \subset A$
 - A = {1, 2, 3, 4, 5, 6}, B = {1, 2}, then $B \subset A$
 - The empty set \varnothing is a subset of every set, including itself
 - $\emptyset \subseteq A$, for every set A
 - If B is not a subset of A, then we write $B \not\subset A$

Set Union

 Let A and B be two sets. Then, the union of A and B, denoted by A ∪ B is the set of all elements x such that either x ∈ A or x ∈ B.

 $- A \cup B = \{x: x \in A \text{ or } x \in B\}$

- Examples:
 - A = {10, 20 , 30, 40, 100}, B = {1,2 , 10, 20} then A \cup B = {1, 2, 10, 20, 30, 40, 100}
 - C = {Tom, Bob, Pete}, then $C \cup \emptyset = C$
 - For every set A, A \cup A = A

Set Intersection

- Let A and B be two sets. Then, the intersection of A and B, denoted by A ∩ B is the set of all elements x such that x ∈ A and x ∈ B.
 - $A \cap B = \{x: x \in A \text{ and } x \in B\}$
- Examples:
 - A = {10, 20 , 30, 40, 100}, B = {1,2 , 10, 20} then A \cap B = {10, 20}
 - Y = {red, blue, green, black}, X = {black, white}, then Y \cap X = {black}
 - E = {1, 2, 3}, M={a, b} then, E ∩ M = Ø
 - C = {Tom, Bob, Pete}, then $C \cap \emptyset = \emptyset$
- For every set A, $A \cap A = A$
- Sets A and B disjoint if and only if $A \cap B = \emptyset$
 - They have nothing in common

Set Difference

 Let A and B be two sets. Then, the difference between A and B, denoted by A - B is the set of all elements x such that x ∈ A and x ∉ B.

 $- A - B = \{x: x \in A \text{ and } x \notin B\}$

- Examples:
 - A = {10, 20 , 30, 40, 100}, B = {1,2 , 10, 20} then A B = {30, 40, 100}
 - Y = {red, blue, green, black}, X = {black, white}, then Y X = {red, blue, green}
 - $E = \{1, 2, 3\}, M = \{a, b\} \text{ then, } E M = E$
 - $C = \{Tom, Bob, Pete\}, then C \emptyset = C$
 - For every set A, A A = \emptyset

Sample Application with sets

- Program to keep track of students in courses
 - Example: ICOM 4035 and ICOM 6005.
 - Operations
 - Add a student to a course
 - Remove a student from a course
 - Report all students in all courses
 - Report all students taking both courses
 - Report students taking one course but not the other.
 - Use sets to implement object that represent the students in each class.
 - Use set operations to answer each of these questions

Alternative implementation of sets

- Allows for faster, constant time search and delete operation on the set.
 - Implementation for array require looking up all array.
- Alternative is called bit vector
- Use an array of unsigned char or unsigned int to represent sets of integers.
 - Each bit represents a number.
 - The bit at position k represents integer k.
 - If k is in the set, then the bit is set to 1, otherwise it is set to 0.
- Names, places and other objects to which we can assign a number can also be represented this way.

Example:

- Suppose we have array of size 2 of unsigned char
- Rightmost position is 0, numbers increase to left.
- 0100001100011100
 - Represents set {2,3,4,8,9,14}
 - Storage requirements: 2 bytes
 - Previous implementation would have required at 5 bytes.
 - In fact, with 2 bytes we can represent up to 16 numbers.
- Each byte is a segment of the bit vector.
- To find an element we need to know segment number and its position within segment to locate it
 - Segment is given by: element / segment size
 - Position is given by: element % segment size

Example

- Given 2 byte bit-vector 0100001100011100
- Where is element 1 located?
 - Segment 0, position 1
- Where is element 4 located?
 - Segment 0, position 4
- Where is element 8 located?
 - Segment 1, position 0
- Where is element 10 located?
 - Segment 1, position 2
- Where is element 19 located?
 - Cannot be represented due to lack of space.
 - Bit vector n bytes can only represent (n * 8) 1 elements

Boolean Algebra

- Needed to inspect bits in the bit vector.
- Supported operations: AND, OR, XOR
- Also need bit-wise shift operators that are used to move bits from a position to another.
- Left shift move all bits n spots to the left, discarding elements that reach and pass last position.
 - 0101 << 1 = 1010 (shift one)
 - 0101 << 3 = 1000 (shit three)</p>
- Right shift move all bits n spots to the right, discarding element that reach and pass first position.
 - 0101 >> 1 = 0010 (shift one)
 - 0101 >> 3 = 0001 (shift three)

AND Operator

- Expression in C++: A & B
- Truth Table:

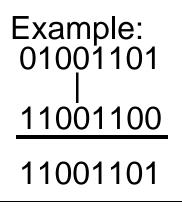
	AND	0	1
A	0	0	0
	1	0	1

Example: 01001101 & 11001100 01001100

OR Operator

- Expression in C++: A | B
- Truth Table:

	OR	0	1
A	0	0	1
	1	1	1



XOR Operator

- Expression A ^ B
- Truth Table:

	XOR	0	1
A	0	0	1
	1	1	0

Example: 01001101 ^ 11001100 1000001