
ICOM 4035 ICOM 4035 –– Data StructuresData Structures

Dr. Manuel Rodríguez Martínez

Electrical and Computer Engineering Department

Lecture 10 – September 20, 2001

ICOM 4035 Dr. Manuel Rodriguez Martinez 2

Alternative implementation of setsAlternative implementation of sets
• Allows for faster, constant time search and delete

operation on the set.
– Implementation for array require looking up all array.

• Alternative is called bit vector

• Use an array of unsigned char or unsigned int to
represent sets of integers.
– Each bit represents a number.

– The bit at position k represents integer k.

– If k is in the set, then the bit is set to 1, otherwise it is set to
0.

• Names, places and other objects to which we can
assign a number can also be represented this way.

ICOM 4035 Dr. Manuel Rodriguez Martinez 3

Example:Example:
• Suppose we have array of size 2 of unsigned char

• Rightmost position is 0, numbers increase to left.

• Ex: 0100001100011100
– Represents set {2,3,4,8,9,14}

– Storage requirements: 2 bytes

– Previous implementation would have required at 5 bytes.

– In fact, with 2 bytes we can represent up to 16 numbers.

ICOM 4035 Dr. Manuel Rodriguez Martinez 4

Bit Vector organizationBit Vector organization
• Bit vector contains 1 or more elements of type either:

– unsigned char (1byte – 8bits)

– unsigned short (2 bytes – 16bits)

– unsigned long (4 bytes – 32bits)

• Each element is a segment of the bit vector.

• To find an element we need to its position within the
bit vector.

• Position is given by segment number and its position
within the segment:
– Segment is given by: element / segment size

– Position is given by: element % segment size

ICOM 4035 Dr. Manuel Rodriguez Martinez 5

Example 1Example 1
• Given 1 byte bit-vector 00011100

• Where is element 1 located?
– Segment 0, position 1

• Where is element 3 located?
– Segment 0, position 3

• Where is element 8 located?
– Cannot be represented due to lack of space.

– Bit vector n bytes can only represent (n * 8) – 1 elements

ICOM 4035 Dr. Manuel Rodriguez Martinez 6

Example 2Example 2
• Given 2 byte bit-vector 0100001100011100
• Where is element 1 located?

– Segment 0, position 1

• Where is element 4 located?
– Segment 0, position 4

• Where is element 8 located?
– Segment 1, position 0

• Where is element 10 located?
– Segment 1, position 2

• Where is element 19 located?
– Cannot be represented due to lack of space.
– Again: Bit vector n bytes can only represent (n * 8) – 1

elements

ICOM 4035 Dr. Manuel Rodriguez Martinez 7

Searching the bit vectorSearching the bit vector
• To search for an element we need to inspect bits in

the bit vector.

• This is done via Boolean Algebra Operation and Bit-
shifting

• Boolean Algebra operations:
– AND, OR, XOR

• Shifting operations
– Left shift

– Right shift

ICOM 4035 Dr. Manuel Rodriguez Martinez 8

AND OperatorAND Operator
• Expression in C++: A & B

• Truth Table:

Examples:
01001101 01010101 11111111 10100111

& & & &
11001100 10101010 00000000 00000100

01001100 00000000 00000000 00000100

101

000

10AND

A

B

ICOM 4035 Dr. Manuel Rodriguez Martinez 9

OR OperatorOR Operator
• Expression in C++: A | B

• Truth Table:

Examples:
01001101 01010101 11111110

| | |
11001100 10101010 00000001

11001101 11111111 11111111

111

100

10OR

A

B

ICOM 4035 Dr. Manuel Rodriguez Martinez 10

XOR OperatorXOR Operator
• Expression A ^ B

• Truth Table:

Examples:
01001101 00000000 11111111

^ ^ ^
11001100 11111111 11111111

10000001 11111111 00000000

011

100

10XOR

A

B

ICOM 4035 Dr. Manuel Rodriguez Martinez 11

Left ShiftLeft Shift
• Operation:

– move all bits n spots to the left

– discard elements that pass beyond last position.

– add zero at first position of bit vector

• Examples:
– 0101 << 1 = 1010 (shift one)

– 0101 << 3 = 1000 (shift three)

– 11111111 << 2 = 11111100 (shift two)

– 11110011 << 2 = 11001100 (shift two)

– 11111111 << 8 = 00000000 (shift eight)

ICOM 4035 Dr. Manuel Rodriguez Martinez 12

Right ShiftRight Shift
• Operation:

– move all bits n spots to the right

– discard elements that pass beyond first position.

– add zero at last position of bit vector

• Examples:
– 0101 >> 1 = 0010 (shift one)

– 0101 >> 3 = 0001 (shift three)

– 11111111 >> 2 = 00111111 (shift two)

– 11110011 >> 2 = 00111100 (shift two)

– 11111111 >> 8 = 00000000 (shift eight)

ICOM 4035 Dr. Manuel Rodriguez Martinez 13

Finding an elementFinding an element
• Given a bitset b, and an element k we want to

support: b.find(k)
– True if the element is present

– False otherwise

• Example: b = 01010011, k = 2.
– Then, b.find(2) should be false.

• How do we do it? Inspect bit at position 2.
– If set to 1, 2 is in the set, return true.

– If set to 0, 2 is not in the set, return false.

• Solution: Use shift to “mask” all other bits, then use
AND operator to determine if the bit is set or not.

ICOM 4035 Dr. Manuel Rodriguez Martinez 14

Finding an element (sketch)Finding an element (sketch)
• b = 01010011

• mask = 00000001

• mask = mask << 2 = 00000100

• Now use and operator to inspect bit:

01010011

&

00000100

00000000

• Since result was 00000000, which is equal to number
0, then we now, that element was not present.

ICOM 4035 Dr. Manuel Rodriguez Martinez 15

Finding an element (many segments)Finding an element (many segments)
• If the bit vector has many segments, then we must

locate segment, and then position within segment.
• Suppose the bit-vector is composed of 8-bit

segments.
• Consider b = 0001000111000011, and b.find(12).
• We need to first find the segment and the position of

12 within the segment:
– Segment = 12 / 8 = 1 -> 00010001
– Position = 12 % 8 = 4

• Now, determine if bit 4 of 00010001
– mask = 00000001 << 4 = 00010000
– AND operation: 00010001 & 00010000 = 00010000
– Since result is different from zero, element 12 is in the bit set

ICOM 4035 Dr. Manuel Rodriguez Martinez 16

Inserting an elementInserting an element
• To insert an element to the bit set, all we need to do it

to turn the bit on.
• Consider: b = 01010011, k = 3, b.insert (3)

– Result should be: 01011011

• How do we do it?
– Use shift to move a 1 to bit 3
– Use OR to add bit into the bit set

mask = 00000001 << 3 = 00001000
b = b | mask => 01010011

|
00001000
01011011

ICOM 4035 Dr. Manuel Rodriguez Martinez 17

Deleting an elementDeleting an element
• To delete an element is somewhat trickier.
• We need to first write the element (if not already there) and

delete it by making an XOR operation.
• Consider b = 01010011, k = 1, b.delete(k)

– Result should be: 01011001

• How do we do it?
– Use shift to move a 1 to bit 1
– Use OR to add bit at pos 1 into the bit set (although already there)

and then use XOR to delete it.

mask = 00000001 << 1 = 00000010
b = b | mask => 01010011 b = b ^ mask => 01010011

| ^
00000010 00000010
01011011 01011001

First step
Second step

ICOM 4035 Dr. Manuel Rodriguez Martinez 18

Union operationUnion operation
• Consider two bit vectors

– b1 = 00110011

– b2 = 01010001

• If we take the OR operation between b1 and b2:

00110011

|

01010001

01110011

• We get all the bits that are set in either bit set: UNION!

• The union operation is obtained by making an OR on the bit
sets. Corresponding segments in each bit set must be united.
– Ex: 0010001000000010 | 1010000000000001 =

1010001000000011

ICOM 4035 Dr. Manuel Rodriguez Martinez 19

Intersection operationIntersection operation
• Consider two bit vectors

– b1 = 00110011

– b2 = 01010001

• If we take the AND operation between b1 and b2:

00110011

&

01010001

00010001

• We get all the bits that are set in both bit sets: Intersection!

• Intersection operation is obtained by making an AND on the bit
sets. Corresponding segments in each bit set must be
intersected.
– Ex: 0010001000000010 & 1010000000000001 =

0010000000000000

ICOM 4035 Dr. Manuel Rodriguez Martinez 20

Difference operationDifference operation
• Consider two bit vectors

– b1 = 00110011

– b2 = 01010001

• If we take the XOR operation between b1 and b2,
and then we take the AND of this result with b1:

00110011 00110011

^ &

01010001 01100010

01100010 00100010

• Get all the bits that are set in the first but not in the
second: Difference!

ICOM 4035 Dr. Manuel Rodriguez Martinez 21

Difference OperationDifference Operation
• The difference operation is obtained by making an

AND operation and then an XOR on the bit sets.
Corresponding segments in each bit set must have
the difference operator applied to each.
– Ex: 0010001000000010 - 1010000000000001 =

0010000000000010

