Department of Electrical and Computer Engineering
University of Puerto Rico
Mayaguez Campus

|COM 4035 - Data Structures
Fall 2001

Project #2: M ovie Database Application using Linked Lists
Due Date: 11:59 PM-November 20

Objectives
1. Understand the design, implementation and use of alinked lists class container.
2. Gan experience implementing gpplications using layers of increasing complexity and
fairly complex data structures.
3. Gan further experience with object-oriented programming concepts, specidly templates
and operator overloading

Overview

You will implement and test an gpplicaion that acts as man-memory daabase containing
information about movies. All the records with movie information will be dored in a sorted
doubly linked class container. The sorting for the movie record will be based on the movie title.
For amplicity we will assume movie titles congging on either a one word, or multiple words
separated by a dash - . For example Platoon, Titanic, Jaws-3. The following diagram illustrates
agenerd level organization of a movies database for these three movies.

header ti'
[E Jaws-3 Platoon Titanic i
N —> —>) —>)
D E— j— «— <«—

In redity, each node will not have smply the movie title, but a record that has the following
information:

Movie Title

Movie year of release

Durétion of the movie (minutes)

Rating of the movie (must be one of NR, G, PG, PG-12, R, NC-17)

Linked Ligt with the name of the actors

agr®ODNE

You will implement the following operations for the movie datdbase gpplication, usng the a
class called the DataM anager:

Add movie — add a new movie record to the movie database.

Delete movie — deletes a movie record from the movie database.

Add cast — adds a new cast member name to amovie

Délete cast — deletes a cast member name (if present) from amovie

Find movie — finds the information record for amovie

Find movies by actor name — finds adl movies by a given actor. Returns a new sorted
doubly linked ligt with them.

ouh~hwbdE

7. Find movies by rating — finds al movies with a given rating. Returns a new sorted doubly
linked ligt with them.

8. Find movies by year — find al movies made in a given year. Returns a new sorted doubly
linked ligt with them.

9. Find movies by time period — finds al movies in a time period (eg. 1980-1985). Returns
anew sorted doubly linked list with them.

10. Print moviesin order — prints al the moviesin the sorted order.

11. Print moviesin reverse order — prints al the movies in the reverse sorted order

NOTE: You must keep the moviesin sorted order at all times.

Sorted Doubly Linked List Class Container

You must implement a sorted doubly linked-list class container to keep the information about
the movie records, and aso to keep the name of the actors within a movie. The sorted doubly
linked list is atemplate that receives two parameter types:

1. LigData — the object to be stored in the ligt. It is assumed by the templates that a LisData
type will implement a function caled get_key() that returns an object of type DataKey
(explained bedow). In addition, the ListDaia data-type must overload the reationd
operators = =, !=, <, <=, >, >=. In this project you will use classes Name and Movie in
thisrole of ListData. These classes are explained below.

2. Data Key — represents an identifier for the object stored in the ligt. It should be returned
fromthe acdl to method get_key().

The sorted doubly linked list has to specid nodes delimiting the node with the list data.
1. header node- has no data and points to the firs dement in the lig. If the lig is empty, it
points to the tail node.
2. tal node — has no data and points to the last dement in the lig. If the lig is empty, it
points to the header node.

Each node in the lig has a next fidd that points to the next node in the lis. Smilarly, each node
has a prev fidd which points to the previous node in the lig. Findly, the data in each node is
dored in afidd cdled data.

The following diagram shows severd cases of sorted doubly linked ligts:

I

header tj'
E E Erl?gty
I —>
— —i
header tall One
¢ L element
[E Titanic /E list
| H— — > —| |
| 4_
header ti'l
[E Jaws-3 Platoon Titanic yis
—> —> 5 —>
<« «—— «— <«

Remember that you will use the sorted doubly linked list for two purposes:
Implement the list of movie recordsin the database.
Implement the list of actor names in amovie record.

1
2.

NOTE: For the sorted linked ligt class container, you MUST follow these guidelines.
The erase operator must do an in-place removd of the target node. It cannot copy nodes
to a new ligt, skipping the node that you want to delete. Programs that deviate from this
direction will not be consdered a running program.

1.

The destructor cannot create memory leaks.

The copy condtructor must create a deep copy of the lists.
The insert operation must put a new node in the gppropriate sorted order. If your lists are
unordered, your program will not be consdered a running program.

Name Class
The name class will represent the name of an actor in a movie. It will have two private fidds, the
actor’s last name and the actor’ sfirst name. Y ou will be given the C++ for thisclass.

Name List Class

The name ligt class represents a sorted list of names. This classes uses the sorted doubly linked
list to mantan the lig of names. You will be given the C++ for this class. (Except for the
linked list code).

Data M anager

You mugt implement a Data Manager dass that will mantan the lig of movies The Daa
Manager has the lig of movies a private member. The Data Manager provides the interface to
perform dl the maintenance operaions on the movie database. These operations were mentioned
a the beginning of this document.

Distribution Files

You can go to the class web page and download a tar file containing al the files rdaed with this
project. Just access the link named Projects, and download the sources files associated with the
link: Project #2 — Movie Database with Lists

You implementation will conss of adding C++ code to implement two modules
SDoublyLinkedList.cc and DataManager.cc. You will receive dl the .h files necessary for this
project. In addition, you will be provided with a main program that uses the DataManager class,
and interacts with the user to ask higher input on the operations and polynomias to be evaluated.
Findly, you will be given a Makefile with dl the commands needed to compile and submit your
project. In summary, you program will conas of the following files

1. SDoublyLinkedList.h —interface for the sorted doubly linked ligt.

2. SDoublyLinkedLig.cc — implementation of the sorted doubly linked list class container.

YOU MUST IMPLEMENT THE METHODS THAT APPEAR IN THISFILE.
3. lig_test.cc —smadl test program for the sorted doubly linked list container.
4. ligt_tedt exp.cc — template binding declarations for the the ligt test.cc file DO NOT

5. Name.h — interface for an actor name class.

6. Name.cc — implementation of an actor name class.

7. Namelist.h—interfacefor aligt of actor names.

8. Nameligt.cc —implementation of thelist of actor names.

9. Movieh— interface for amovie information record class.

10. Movie.cc — implementation of amovie record.

11. DataManager.h — interface of the data management class for the movie database.

12. DataManager.cc — implementation of the data management class for the movie database.
YOU MUST IMPLEMENT THE METHODS THAT APPEAR IN THISFILE.

13. moviedb.h — interface for the movie database application.

14. moviedb.cc — implementation of the movie database gpplication.

15. Makefile — filewith the commandsto compile and submit you project.

16. testl.in —test input file 1.
NOTE: YOU PROGRAM MUST PASS THIS FILE WITHOUT ERRORS IN ORDER
TO BE CONSIDERED A RUNNING PROGRAM.

17. test1.out — expected output from test input file 1.

18. test2.in — tet inpuit file 2.

19. test2.out — expected output from test input file 2.

20. test3.in — test input file 3.

21. test3.out — expected output file from test input file 3.

22. prof_list_test — professor’s version of the list_test program. NOTE: Known to be working
correctly.

23. prof_moviedb — professor’'s verson of the moviedb program. NOTE: Known to be
working correctly.

PROJECT DUE DATE: 11:49 PM — November 20, 2001.

