

ICOM 6005 – Database Management Systems Design

Dr. Manuel Rodríguez Martínez Electrical and Computer Engineering Department Lecture 5 – September 4th, 2001

Readings

- Read
 - Chapter ? of old version of textbook
 - Chapter 4 of new version of texbook
 - Paper by E.F. Codd
 - A Relational Model of Data for Large Shared Data Banks
- Get:
 - ICOM6005-Manual #2 from Engineering Reproduction Center

Some clarifications: Relational Model

- Relation model
 - Conceptual model for data
 - Data is modeled in tabular fashion
 - Rows is a record containing related information that describes an entity.
 - Columns are attributes of the entity (also called fields)
 - Row represents a group of related attributes that represent or give some information about the entity.
 - Relation schema describes the characteristics of the relation
 - Relation name
 - List of attributes
 - Attribute name
 - Attribute domain
 - Domain
 - Name
 - Associated values

Attribute Domain

- The domain is the set of possible values that an attribute can assume.
 - Z set of integers
 - A set of dates after January 1st, 2000.
 - M set of ages greater or equal than 18 years.
- In relational model, the domain is described by a domain name and data type.
 - Domain is equivalent to a data type in a programming language
 - Both describe legal values for a variable
 - Can be user-defined
 - Ex: M set of ages greater or equal than 18 years.

Example: University Students

• Relation Schema:

Students(sid:string, name:string,login:string, age:integer,gpa:integer);

- Relation name: Students
- Attributes: sid, name, login, age, gpa
- Domains: string, integer

Relation instance

- Relation instance set of rows (also called tuples) that follow a relation schema R.
 - called relation for short.
- Technically, a relation should not have duplicates, but most commercial database management systems allow them.
- Example: Students(sid:string, name:string,login:string, age:integer,gpa:integer);

sid	name	login	age	gpa
1234	Manuel	manu@ece	18	3.50
6767	Jose	joe@ece	25	3.10
8901	Luz	luz@ece	21	4.00

Relation instance

- Order of the rows is irrelevant
- If the attributes in the schema are named, then the order is irrelevant in theory
 - Most commercial systems assign a position to the fields
 - Example: Students(sid:string, name:string,login:string, age:integer,gpa:integer);
 - sid column 1
 - name column 2
 - login column 3
 - age column 4
 - gpa column 5
 - You can access attributes (fields) by either name or position

Relational schema notation

- Given a set of Domain D1, D2, ..., Dn a relation R over these domains is a subset of D1xD2x...Dn.
- R is specified as:
 - R = {a1:D2,a2:D2,...,an:Dn| where a1 ∈ D1, a2 ∈ D2, ..., an ∈ Dn.
 - Sometimes, a relation R is described simply by schema as
 - R(a1:D2, a2:D2,...,an:Dn)
 - Lists the attribute names and their corresponding domain
 - If each domain is well-known or understood from the context of a document, then the relation is simply describe by the attribute names
 - R(a1, a2, ..., an)
 - Merely indicates the attribute names in the

Keys

- Candidate keys a set of attributes that uniquely identifies a tuple r in a relation R.
 - Just call it a key.
 - Two tuples cannot have the same key
 - In commercial DBMS this must be enforced by a constrain
 - Remember that commercial systems allow duplicate tuples
 - A constrain is a restriction on the values of one or more attributes.
 - If an attribute is remove from a candidate key, it is no longer a key.
- Super keys set of attributes that contain a subset of attributes which is a candidate key
- Primary keys candidate key selected by a database designer to be the key of a relation R.

Examples on keys

sid	name	login	age	gpa
1234	Manuel	manu@ece	18	3.50
6767	Jose	joe@ece	25	3.10
8901	Luz	luz@ece	21	4.00

- Candidate keys {sid}, {login,age}
- Super Keys {sig, name}, {sid, gpa}, {sid, login, age}
- Primary key {sid}
- Non-keys {login}, {age}, {name, login}

Some issues on keys

- Every relation has a candidate keys in theory
 - Relational DBMS might allow relation with no keys
- A relation R might have multiple candidate keys
 - Example: Students can have either {sid} or {login,age}
- Primary key is chosen by DB designer. Usually is the candidate key that makes the most sense, meaning that is
 - Simple as few attributes as possible.
 - Student ID sid -> just one attribute
 - Intuitive attributes naturally identify a tuple.
 - Student ID sid -> natural way to identify a student

Relational Algebra

- Query language specialized language to ask questions to the database.
 - These are normally called "queries"
- Relational algebra expresses queries as operations to be executed on the data (input relation).
 - Procedural expressions in the sense that they specify operation to be applied to an input relation
 - The do not specify how to implement these expressions, so they are not a procedural language.
- Relational algebra expression are specified over the schema of a relation, but are applied to an instance.
 - Relation names and attributes appear in the expressions.

Relational Algebra (cont.)

- In a relational algebra expression:
 - Input is a relation R which can either be:
 - A base relation that exists as an instance in the database.
 - A temporary relation that is the result of another relational algebra expression.
 - Composition of relational algebra expressions
 - Output a new relation R different from the base relations that are stored in the database (different from the existing instances).
- Relational algebra expressions can be the input to other expression.
- A relation is always the output of any relational algebra expression.

University Database Schema

- Students(<u>sid:string</u>, name:string,login:string, age:integer,gpa:integer);
- Courses(<u>cid:string, section:integer</u>, name:string, room:integer);
- Registration(cid:string, section:integer, sid:string);
- Key fields are underlined.

Relational Instance: Students

sid	name	login	age	gpa
9291	Mary	mary@ece	30	4.00
1234	Manuel	manu@ece	18	3.50
6767	Jose	joe@ece	25	3.10
3229	Bobby	bob@ece	19	3.90
9987	Rafael	rafy@ece	29	2.75
8901	Luz	luz@ece	21	4.00

Information about enrolled students

Relational Instance: Courses

cid	section	name	room
8010	1	English I	333
8010	2	English I	333
8010	3	English I	333
8074	1	Databases	123
8074	2	Databases	124
8075	1	Electronics	230
8087	1	Calculus	276

Information about courses being offered

Relational Instance: Registration

cid	section	sid
8074	1	1234
8087	1	1234
8010	1	6767
8010	1	8901
8010	2	3229
8075	1	9291
8087	1	1234

Information about student enrollment

Selection Operation

- Extracts a set of tuples from a relation R based on a boolean condition c.
 - Results is a set new relation with the same schema as input relation R.
 - Selection condition c is a predicate that restricts the tuples that are in the result.
 - Tuples must "pass" the condition to be in the selection result.
- Formalism:

Given a relation R, the selection operation:

$$S = \boldsymbol{s}_{c}(\boldsymbol{R})$$

is the defined as $S = \{ t \mid t \in R \text{ and } c(t) = true \}$

Selection Example 1

- Get all students with a gpa greater than 3.50.
- Relation Algebra Expression:

 $\boldsymbol{s}_{gpa>3.50}(Students)$

• Result:
$$R = \mathbf{S}_{gpa>3.50}(Students)$$

sid	name	login	age	gpa
9291	Mary	mary@ece	30	4.00
3229	Bobby	bob@ece	19	3.90
8901	Luz	luz@ece	21	4.00

Selection Example 2

- Get the course information for English I
- Relational Algebra Expression:

$$\boldsymbol{s}_{name="EnglishI"}(Courses)$$

• Result: $R = \mathbf{S}_{name="English I"}(Courses)$

cid	section	name	room
8010	1	English I	333
8010	2	English I	333
8010	3	English I	333