
ICOM 4035 – Spring 2002 – Exam # 3
Name: ____________________________ Section: ___________

 1

ICOM 4035 – Data Structures

Exam III
May 1, 2002

Name: ____________________________

Student Number: ____________________

Section: _____________________________

Instructions:

1. Write your name on all pages of this exam.
2. You have two hours to complete this exam. Use your time wisely.
3. This exam is worth 100 points, but it contains six problems totaling

110 points. Do as many problems as you can.
4. Read each question carefully, and show all the work you used to

generate your answer.
5. To receive partial credit, you must show all the work you used to

generate your answer.

GOOD LUCK!

ICOM 4035 – Spring 2002 – Exam # 3
Name: ____________________________ Section: ___________

 2

SCORE

1 /15
2 /10
3 /10
4 /15
5 /30
6 /30

TOTAL /100

ICOM 4035 – Spring 2002 – Exam # 3
Name: ____________________________ Section: ___________

 3

Problem 1. (15 points) Understanding of the Binary Search Tree
Use the following Binary Search Tree T, storing integers, to answer the following questions:

20

15 28

10 18 24 30

21

22

T

a) (5 pts) What is the height of the tree T?

ICOM 4035 – Spring 2002 – Exam # 3
Name: ____________________________ Section: ___________

 4

Problem 1 (Continuation)
b) (5 pts) Draw the resulting BST after applying the operation T.delete(20) to the tree T.

c) (5 pts) Draw the resulting BST after applying the operation T.insert(21) to the original
tree T.
(NOTE: Assume the operation in b) was not executed!)

ICOM 4035 – Spring 2002 – Exam # 3
Name: ____________________________ Section: ___________

 5

Problem 2. (10 points) True or false about general course concepts
Use the Binary Search Tree T from problem 1 to determine whether each of the following
statements is true or false. For those that you declare as false, you must explain your answer.

a) (5 pts) In a post-order tree traversal of tree T, the nodes will be visited in the following
order: 10, 18, 15, 22, 21, 24, 30, 28, 20.

b) (5 pts) In a pre-order tree traversal of tree T, the nodes will be visited in the following
order: 20, 15, 28, 10, 18, 24, 30, 21, 22

ICOM 4035 – Spring 2002 – Exam # 3
Name: ____________________________ Section: ___________

 6

Problem 3. (10 pts) Big-Oh notation
Use Big-Oh notation to determine the complexity of the running time for each of the following
code fragments. Briefly explain you answer.

a) (5 pts)
// Assume BST definition as in project 4
template <typename BSTData, typename Key>
int BinarySarchTree<BSTData,Key>::num_nodes
(BSTNode<BSTData> *node) const {
 if (node == NULL){
 return 0;
 }
 else {
 return 1 + num_nodes(node->left_child) +
 num_nodes(node->right_child);

 }
}

b) (5 pts)
// Assume BST definition as in project 4
void print_data(const BinarySearchTree<int>& T) {
 int data[100], i=0, len = 100;
 for (i=0; i<len; ++i){
 data[i] = i;
 }
 for (i=0; i < len; ++i){
 if (T.erase(i)){
 cout << “Number: “<< i << “ was found” << endl;
 }
 else {
 cout << “Number: “<< i << “ was not found<< endl;
 }
 }

 }

ICOM 4035 – Spring 2002 – Exam # 3
Name: ____________________________ Section: ___________

 7

Problem 4. (15 points) Understanding of Binary Search Tree Container Class.
Trace the execution of the following operations on an instance of a Binary Search Tree container
class (as in project 4) of string. Write your answer on the next page of this exam.

BinarySearchTree<string,string>;

T.insert(-1);
T.insert(10);
T.insert(-2);
T.insert(0);
T.erase(-1);
T.insert(3);
Pre_order_Iterator<string,string> = T.find(0);
cout << T.size() << endl;
T.insert(0);
T.erase(0);
T.insert(-4);
T.erase(10);

ICOM 4035 – Spring 2002 – Exam # 3
Name: ____________________________ Section: ___________

 8

Problem 4. (Continuation)

ICOM 4035 – Spring 2002 – Exam # 3
Name: ____________________________ Section: ___________

 9

Problem 5. (30 points) Usage of the Binary Search Container class.
A collection of one or more independent trees is called a forest. One mechanism used to
represented a forest is simply as an array of trees and an integer that provides the number of trees
in the forest. Suppose that you have forest of Binary Search Trees (BST) storing C++ strings,
and that each tree has the same interface as in project 4. Answer the following questions:

a) (10 pts) Write a function count_copies() that returns the total number of times that
a given string str appears in the forest.
Hint: Think about the in-order iterator for BST.

// returns number of copies of string str stored in the forest
int count_copies(BinarySearchTree<string,string> forest[],
 int forest_size, const string& obj){

ICOM 4035 – Spring 2002 – Exam # 3
Name: ____________________________ Section: ___________

 10

Problem 5. (Continuation)

b) (10 pts) Write a function delete_from_forest() that removes all copies of a

element string str from the forest. After completion, all copies of str are removed
from all trees in the forest.

void delete_from_forest
(BinarySearchTree<string,string>[] forest, int forest_size,
 const string& str){

ICOM 4035 – Spring 2002 – Exam # 3
Name: ____________________________ Section: ___________

 11

Problem 5. (Continuation)

c) (10pts) Write a function count_different() that counts the number of different

strings that are stored on a given tree S, where S provides the index in the array for the
target tree.
Hint: Use a queue to store all the elements of tree S, and the find the different ones.

int count_different(BinarySearchTree<string,string> forest[],
 int forest_size, int S){

ICOM 4035 – Spring 2002 – Exam # 3
Name: ____________________________ Section: ___________

 12

Problem 6. (30 points)
In this course, we have implemented Binary Search Tree using nodes that have pointers to the
left child and the right child of the given node. An alternative implementation is by having each
node have two pointers:

1. A pointer to its left child
2. A pointer to its right sibling

The following diagram illustrates this scheme:

Mel

Jil Ned

Al RonMoe

Neil

We can declare the structure for the BSTNode from project 4 as follows:

// BST Node
template <typename BSTData>
 struct BSTNode {
 // Data stored in the BST
 BSTData data;
 // Left child
 BSTNode *left_child;
 // Right sibling
 BSTNode *right_sibling;
 };

With this information answer the following questions.

ICOM 4035 – Spring 2002 – Exam # 3
Name: ____________________________ Section: ___________

 13

Problem 6 (Continuation)
a) (10 pts) Write the function find_aux() with finds a pointer to the first element in the

binary search tree with a given key K.

 template <typename BSTData, typename DataKey>
 BSTNode<BSTData>* BinarySearchTree<BSTData,DataKey>::find_aux
 (const DataKey& key, BSTNode<BSTData> *node) const {

ICOM 4035 – Spring 2002 – Exam # 3
Name: ____________________________ Section: ___________

 14

Problem 6. (Continuation)

b) (10 pts) Write the function insert_aux() which inserts a new element in the Binary
Search Tree. This function must follow the Binary Search Tree order property:

For any node N in the Binary Search Tree T, the key for node N is greater than
the key of all the nodes in its left subtree, and is also smaller or equal than the
key of all nodes on its right subtree

 template <typename BSTData, typename DataKey>
 void BinarySearchTree<BSTData,DataKey>::insert_aux
 (const BSTData& obj, BSTNode<BSTData> * & node){

ICOM 4035 – Spring 2002 – Exam # 3
Name: ____________________________ Section: ___________

 15

Problem 6. (Continuation)
c) (10 pts) Implement a new function print_pre_preorder() which visits all the

nodes on a tree in pre-order, printing the key of each node as it visits them. Each key is
printed on a different line.

// out – the output stream
// node – the root of the tree currently being visited in
// pre-order

 template <typename BSTData, typename DataKey>
 void BinarySearchTree<BSTData,DataKey>::print_pre_order
 (ostream& out, BSTNode<BSTData> *node) {

