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Objectives

 

1. Understand the design, implementation, usage and limitation of ADT based on fixed-
sized arrays.  

2. Gain experience implementing abstract data types using already developed data 
structures. 

3. Gain experience with object-oriented programming abstractions, especially constructors  
and operator overloading  

Overview

 

You will implement and test a polynomial class, using fixed-sized array as the data structure to 
store the terms in a polynomial. Each term in the polynomial is also a class that you will need to 
implement. Recall that the general form of a polynomial is as follows:  
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Here, each term has a coefficient, denoted as ia , and a exponent i, which represent the power of 

the variable x. Your polynomial class must implement the following operations: 
1. Addition – given two polynomials 1P  and 2P , compute the polynomial 213 PPP += . 

2. Subtraction – given two polynomials 1P  and 2P , compute the polynomial 213 PPP −= . 

3. Multiplication – given two polynomials 1P  and 2P , compute the polynomial 213 * PPP = . 

4. Derivative – given a polynomial P , finds its derivative. 
5. Indefinite integral – given a polynomial P , finds its indefinite integral (anti-derivative). 
6. Definite integral – given a polynomial P , evaluate its definite integral over an interval 

[a,b]. 
7. Degree – given a polynomial P , find its degree (the largest exponent in any term). 
8. Evaluate – given a polynomial P , evaluate it at value x, to compute )(xPy = .  

You must first implement the polyterm class, which implements a term in a polynomial. You 
will use a fixed-size array to store the terms in the polynomial, in decreasing order of exponent. 
Thus, each element in the array represents a term in the polynomial.  The array will have a 
maximum size CAPACITY that limits the number of terms that can be added to the polynomial.  



There will be a variable, curr_size, that stores the actual number of terms that are in use in the 
polynomial. The terms will be stored in an array of terms called poly_terms. For example, if we 
need to represent the following polynomial: 123 2 ++ xx , then the organization of the polynomial 
class should look like this:          

The dotted lines are meant to convey the fact that each element in the array is an polyterm 
object with two fields: the coefficient of the term and the exponent to which the variable x 
should be raised. In the polynomial class, the capacity will be a public constant, whereas the 
current size and the array of terms will be private members. In your implementation, you cannot 
store terms containing a coefficient equal to zero. The only exception is the case in which the 
polynomial correspond to P(x) = 0, meaning that the polynomial is just the number 0. When you 
implement your mathematical operations you must make sure you do not add terms to the 
polynomial that are zero. Again, the only exception is when the resulting polynomial is the 
value 0. To clarify, this point consider the following expression: (2x + 1) – (2x – 2). In this case, 
the resulting polynomial will be 3, and the representation should be:          

As you can see, the terms with variable x cancel out, and there is no need to represent 0x in the 
polynomial. Likewise, there is no need to represent the term corresponding to x raised to the first 
power in this polynomial: 12 2 +x        

In this case, the term corresponding to ax is not represented since the coefficient is zero.  
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Implementation

 
Your implementation will consist of adding C++ code to implement two modules: polyterm.cpp 
and polynomial.cpp.   

Module: polyterm.cpp

 
This module contains the implementation of the interface for the class used to represent the terms 
in a polynomial. Public methods to be implemented: 

 

polyterm(double coefficient,  unsigned int exponent) - constructor for the polynomial 
term based on a coefficient and an exponent. 

 

double get_coefficient() - Returns the coefficient of this term. 

 

unsigned int get_exponent() - Returns the exponent of this term 

 

void set_coefficient(double coefficient) - Sets the value of the coefficient for this 
term. 

 

void set_exponent(unsigned int exponent) - Sets the value of the exponent for this 
term. 

 

bool operator==(const polyterm& T) - Equality operator. Returns true if both terms 
have the same exponents and coefficients, or false otherwise. 

 

bool operator!=(const polyterm& T) - Inequality operator. Returns true if the terms 
are not  equal, or false otherwise. 

 

polyterm operator~() - Oposite operator. Returns a new term that has a coefficient 
with the opposite sign of the coefficient in this term. 

 

double operator()(double b) - Evaluation operator. Returns the value of  the term 
when the value b is used as the value of the variable x in the term. 

 

polyterm derivative() – computes the derivative of this term. 

 

polyterm indefinite_integral() – computes the indefinite integral (anti-derivative).  

Module: polynomial.cpp

 

This module contains the implementation of the interface for the polynomial class. Methods to 
be implemented: 

 

polynomial() – Creates a new polynomial with one term set to 0. 

 

polynomial(const polyterm& new_term) - Creates a new polynomial with one term. 

 

const polynomial& operator+=(const polynomial& P) - Self-addition operator. Adds 
the contents of the argument polynomial to the contents of this polynomial. 
Equivalent expression: P0 = P0 + P1; 

 

const polynomial& operator-=(const polynomial& P) - Self-substraction operator. 
Substracts the contents of the argument polynomial from the contents of this 
polynomial. Equivalent expression: P0 = P0 - P1, where P0 is this polynomial. 

 

void multiply_term(const polynomial& P, const polyterm& T,  polynomial& res) – 
multiplies a polynomial P by a term T, and stores the results in variable res. 

 

const polynomial& operator*=(const polynomial& P) – Self-multiplication operator. 
Multiplies the contents of the argument polynomial with the contents of this 
polynomial. Equivalent expression: P0 = P0 * P1, where P0 is this polynomial. 

 

bool operator==(const polynomial& P) - Determines if two polynomial are equal, 
based on wether or not they have the same terms. 

 

unsigned int degree() - Returns the degree of the polynomial, which is the largest 
exponent of the any term. 



 
const polyterm& operator[](int index) - This operator allows access to a term in the 
polynomial, whose position is given by the argument index. This method must assert 
whether or not the index is within the bound of the array of terms in the polynomial. 

 
double operator()(double x) - Evaluates the value of a polynomial, given the value of 
the variable x. This method evaluates the expression y = P(a), where a is some 
constant number. 

 
polynomial derivative() - This method computes and returns the derivative of a 
polynomial. You must ensure that the method returns 0 if the polynomial is merely a 
term with a constant value (e.g. P(x) = 2). 

 

polynomial indefinite_integral() - This method computes the indefinite integral of this 
polynomial. The method uses the convention that the constant C, used in the 
expression F(x) + C, will be set to 1. 

 

double definite_integral(double a, double b) - This method computes the definite 
integral of this polynomial, on the interval [a,b]. 

 

polynomial operator+(const polynomial& P1, const polynomial& P2) - This method 
adds two polynomials P1 and P2, and returns the result. Equivalent expression: P3 = 
P1 + P2. 

 

polynomial operator-(const polynomial& P1, const polynomial& P2) - This method 
substracts two polynomials P1 and P2, and returns the result. Equivalent expression: 
P3 = P1 - P2. 

 

polynomial operator*(const polynomial& P1, const polynomial& P2) - This method 
multiplies two polynomials P1 and P2, and returns the result. Equivalent expression: 
P3 = P1 * P2.  

All operations must ensure that there is enough room to add terms into the resulting polynomials. 
If not, an assertion should be thrown.  

You will receive all the .h files necessary for this project. In addition, you will be provided with 
a main program that uses the polynomial class, and interacts with the user to ask his/her input on 
the operations and polynomials to be evaluated. Finally, you will be given a Makefile with all the 
commands needed to compile your project. In summary, you program will consist of the 
following files:  

1. polyterm.h – interface for the polyterm class. 
2. polyterm.cpp – implementation of the polyterm class. YOU MUST IMPLEMENT THE 

METHODS THAT APPEAR IN THIS FILE. 
3. polynomial.h – interface for the polynomial class. 
4. polynomial.cpp – implementation of the polynomial class. YOU MUST IMPLEMENT 

THE METHODS THAT APPEAR IN THIS FILE. 
5. poly_test.cpp – test program for the polynomial class. 
6. polymain.cpp – menu-driven main program that interacts with user to perform operations 

on polynomials. 
7. Makefile – the makefile with the commands to compile and submit this project. 
8. test1.in – test input file number one. NOTE: YOUR PROGRAM MUST PASS THESE 

TESTS TO BE CONSIDERED A RUNNING PROGRAM. 
9. test1.out – expected output from file test1.in 



10. test2.in – test input file number two. 
11. test2.out - expected output from file test2.out. 
12. test3.in - test input file number three. 
13. test3.out - expected output from file test3.out.  

You can go to the class web page and download a tar file containing all these files. Just access 
the link named Projects, and down load the sources files associated with the link: Project #1 – 
Polynomials.   

PROJECT DUE DATE: 11:59PM, September 11, 2002           


