PAGE
5
ICOM 4035: Exam1: Name:__

Department of Electrical and Computer Engineering

University of Puerto Rico

Mayaguez Campus

ICOM 4035 – Data Structures (CS2)

Spring 2003
Midterm Exam # 1

	Name:

	Student Number:

	Section:

Instructions:

1. Write your name on all pages of this exam now!

2. You have two hours to complete this exam. Use your time wisely. Do not spend too much time on a problem, when you can work on others.

3. There are six problems for a maximum score of 110 points, but your score will be averaged using 100 points. Complete as many problems as you can, and earn as many points as possible

4. Read each question carefully, and show all the work you used to generate your answer.

5. To receive partial credit, you must show all the work you used to generate your answer.

GOOD LUCK!
Scores

	1
	/20

	2
	/15

	3
	/15

	4
	/10

	5
	/20

	6
	/30

	Total
	/100

Problem 1. (20 points) True or False about general concepts

Determine whether each of the following statements is true or false. For those that you declare as false, your must explain your answer.

a) (5 pts) In a singly-linked list container class, if we call operator delete on the header of the list without first erasing the nodes that follow the header, then we will lose access to all these nodes after header.
b) (5 pts) In the following class Integer, after the call to the constructor is finished, the private variable val will store a value equal to that of the parameter X.

class Integer {

public:

Integer(int X = 0);

int get_value() const {return val);

private:

int val; // value of the integer;

}

//constructor

Integer::Integer(int X) {

val = X;

(*this).val = val;

}

Problem 1 (continuation)
c) (5 pts) Consider the operation abs() from Project 1 of this course. The following implementation of that method has a complexity of O(1) in the number of digits in the array of digits. Recall that we are using the default copy constructor for C++.
Integer Integer::abs() const {

Integer res(*this);

res.sign = POSITIVE;

return res;

}

d) (5 pts) In C++ a virtual method can be used in a class hierarchy to indicate that the specific method implementation to call must be selected at run time depending on the type of the object instance associated with the method to call.
Problem 2. (15 points) Running Times and Big-O Notation
Use Big-O notation to provide a bound on the running time complexity of the following functions. Justify your answer.
a) (5 pts)

// data - an array of integer

// len - the number of elements in data

void array_mover(int data[], int len){

int i = 0, len2 = 0;

if (len <= 0){

len2 = 1000;

}

else {

len2 = 2000;

}

while(i < len2){

data[i++] = data[0];

}

}

b) (5 pts)
// prints elements in a singly-linked list
void sl_list::print_list(ostream& out) {

for (list_node *temp = NULL; temp != NULL;

temp = temp->next){

cout << temp->data << endl;

}

}

Problem 2. (continuation)
c) (5 pts)

void sl_list::print_list2(ostream& out){

int len = 100000;

for (j=0; j < len; ++j){

cout << j << endl;

}

this->make_null();

for (list_node *temp = NULL; temp != NULL;

temp = temp->next){

cout << temp->data << endl;

}

}
Problem 3 (15 points) Tracing Operations on a Class
Trace the following operations on an instance of a bag container class as implemented in the lectures (see Chapter 3 of textbook). Show what happens to the data array of the bag. Draw an arrow to show the slot that is the next free position. Write your answer on the next page of this exam.
Bag b1(8);

b1.add(1);
b1.add(1);

b1.add(1);

b1.add(4);

b1.erase(1);

cout << B1.count(1) << endl;

b1.add(7);

b1+=b1;

b1.erase_all(1);

b1.add(4);

cout << B1.size() << endl;

b1.add(0);

b1.add(1);
b1.erase(0);

Problem 4. (10 points) Understanding of the Bag Container Class
Extend the functionality of the bag class by adding a member function purge() which removes all elements in a Bag b which are smaller than a value obj. The value obj is of type value_type and is passed by constant reference. In fact, obj is the sole parameter of the function. The function purge() returns an int with the number of elements eliminated from the bag b. The function purge()will be called as follows: b.purge(20). (10 pts)
Problem 5 (20 Points) Understanding of the Integer class from Project 1

Extend the functionality of the Integer class implemented in project 1 by completing the following tasks:

a) Implement a constant member function print_long_form()that prints the Integer in long form. For example, the Integer 1021 will be printed in the format:
1000 + 20 + 1.
Likewise, the Integer 34584 will be printed in the format:

30000 + 4000 + 500 + 80 + 4.

Notice that the presence of a 0 means that the digit will not participate in the printing.

(10pts)

Problem 5. (continuation)
b) Implement a member function reverse()which returns a new Integer I2 built by reversing the digits of another Integer I1. For example, if I1 is 8364, then the call

I2 = I1.reverse(), will make I2 become 4638. Likewise, if I1 is 1320, then

I2 = I1.reverse() will make I2 become 231. Notice that the leading 0 gets dropped. (10 pts)
Integer Integer::reverse() const {
Problem 6. (30 points) Understanding of linked lists
A sorted singly-linked list is an extension of the singly-linked list class in which the elements are keep in increase sorted order. Operations like insert and delete must keep the data in sorted order.

The following diagram shows a sorted singly-linked list:

The header points to the first element in the list. It is assumed that the data type in each node is implementing the operators ==, >, <, >=, <=, and <>.

Suppose that the class that implements the this sorted singly-linked list is called SortedSLL Using this information, answer the following three questions. In all cases, you must write any auxiliary function that you use.
Problem 6 (continuation)

a) Implement the member function insert(), which adds a new object into the SortedSLL, and keeps the increasing order. Keep in mind the following two special cases: (1) empty list, and (2) element to insert in larger than all elements currently on the list.
You must write any auxiliary function that you use. (10pts)
void SortedSLL:insert(const value_type& obj){

Problem 6. (continuation)
b) Implement the member function erase(), which removes the first copy of an element from the SortedSLL, and keeps the increasing order. The function must return true if the name is removed or false otherwise.
You must write any auxiliary function that you use. (10pts)
bool SortedSLL::erase(const value_type &obj){
Problem 6. (continuation)
c) Implement the member function operator+=. This operation will combine the contents of this SortedSLL with contents of a second list L. The resulting SortedSLL will be in increasing order, and will become the new value of the array whose function merge() was activated. You must write any auxiliary function that you use. (10 pts
// merge the contents of this SortedSLL with the SortedSLL L
const SortedSLL& SortedSLL::operator+=(const SortedSLL& L) {

Bob

Jil

Ron

header

