ICOM 4035 – Spring 2002 – Exam # 2

Name: ____________________________ Section: ___________

ICOM 4035 – Data Structures

Exam II

March 19, 2003
Name:

Student Number:

Section: _____________________________

Instructions:

1. Write your name on all pages of this exam.

2. You have two hours to complete this exam. Use your time wisely.

3. This exam is worth 100 points, but it contains six problems totaling 110 points. Do as many problems as you can.

4. Read each question carefully, and show all the work you used to generate your answer.

5. To receive partial credit, you must show all the work you used to generate your answer.

GOOD LUCK!

SCORE

	1
	/15

	2
	/15

	3
	/15

	4
	/15

	5
	/20

	6
	/30

	TOTAL
	/100

Problem 1. (10 points) True or false about general course concepts
Determine whether each of the following statements is true or false. For those that you declare as false, you must explain your answer.
a) (5 pts) The operations push() and pop() associated with the stack data structure can be implemented in O(1) time when the stack is implemented with an array.
b) (5 pts) The iterator for linked lists that we defined in project number 2 impose the limitation that there can be only one iterator associated with a linked list at any given point in time.
Problem 1 (Continuation)
c) (5 pts) For the singly-linked list container classes that we discussed in class, the operation erase() is O(N), except for the case in which the singly-linked list is a sorted singly-linked list since the complexity of its erase() method is O(logN) because of the sorting.
Problem 2. (15 pts) BigO notation

Use Big-Oh notation to determine the complexity of the running time for each of the following code fragments. Briefly explain you answer.

a) (5 pts)

// List is assumed to be same singly-linked as discussed in class
void print_list(const sl_list<string>& L) {

for (sll_iterator<string> iter1 = L.last();

iter1.has_data(); iter1.prev()){

cout << iter1.get_data() << endl;

}

for (sll_iterator<string> iter2 = L.first();

iter2.has_data(); iter2.next()){

cout << iter2.get_data() << endl;

}

}

b) (5 pts)

// List is assumed to be same singly-linked as discussed in class void print_list2(const sl_list<int>& L, int num_spaces){

for(sll_iterator<int> iter1 = L.first();
iter1.has_data(); iter1.next()){

// add the number of spaces

for (int i = 0; i < num_spaces; ++i){

cout << “ “;

}

cout << iter1.get_data() << endl;

}

}
Problem 2 (Continuation)
c) (5 pts)
// pops the stack
int stack_poper(stack<string>& S){

int res = 0;

while(!S.is_empty()){

res++;

S.pop();

}

return res;
}

Problem 3. (15 points) Understanding of the singly linked list class.
Trace the execution of the following operations on an instance of a singly linked list (the List class) of string. This class was discussed in the class. Write your answer on the next page of this exam.
sl_list<string> L;

L.insert(“Tom”);

L.insert(“Jim”);

L.erase(“Bob”);

list_iterator<string> iter = L.find(“Jim”);

L.insert(iter.get_data());

cout << L.erase(“Jim”) << endl;

sll_iterator<string> iter2 = L.find(“Jim”);

if (iter2.has_data()){

cout << “Jim is in the list.” << endl

}

else {

cout << “Jim is not in the list.” << endl;

}

L.insert(“Ron”);

cout << L.size() << endl;
Problem 3. (Continuation)
Problem 4. (15 pts) Understanding of the Sorted Singly-Linked List Container

Recall the implementation of the sorted singly-linked list container class from project number 2 using string. Based on that class, answer the following questions:

a) (5 pts) What is the complexity of the function insert() which adds a new element into the sorted singly-linked list while keeping the sorted order? Briefly explain.

b) (10 pts) Write a non-member function summarize() which prints each element in a SortedSLL L, and the number of copies for each element in L. For example, if L = {Jil, Jil, Ned, Ron, Ron, Ron, Ron}, the function will print in the format:

Element: Jil, Copies: 2

Element: Ned, Copies: 1

Element: Ron, Copies: 4
void summarize(const SortedSLL& L){

Problem 5. (20 points) Understanding of the stack data structure
Consider the stack container classes that where discusses in the class. Using the interfaces for this data structure, write the following non-member functions (i.e. client functions).
a) (10 pts) Write a function delete_from_stack() that removes all the copies of a element obj from a stack. After completion, all copies of obj are removed from the stack, and the relative order of the remaining elements on the stack is the same as it was before the operation was called.
template<typename Item>

void delete_from_stack(stack<Item>& S, const Item& obj){
Problem 5 (Continuation)
b) (10pts) Write a non-member function copy_stack()that makes a deep copy of a stack. Notice that this is a non-member function, so you cannot access any internal state in the stack. Moreover you can only use the functions on the interface of the stack (i.e. push(), pop(), top(), etc.)
// src: the source stack
// dst: the destination stack
// This method copies the elements in src into the stack dst.

template <typename Item>

void copy_queue(const queque<Item>& src, queue<Item>& dst){

Problem 6. (30 points)
In this course, we have implemented linked lists using pointers. However, linked lists can also be implemented using arrays. Consider the following declaration for a singly linked list:
#define CAPACITY 100

template <typename Item>

class node {

public:

Item data; // data element

int next; // array index of the next node in the list
};

template<typename Item>

class sl_list {

public:

sl_list(); // create an empty list

void insert(const Item& obj); // insert a new element

void erase(const Item& obj); // remove an element

int find(const Item& obj); // find the position
int size(); // number of elements

boolean is_empty() const; // is this empty?

void make_empty(); // erase all elements

private:

int header; // points to the first node in the list

int frees; //points to the first free node in the list

node<Item> elements[CAPACITY]; //elements in the list

int curr_size; // current size of the list
};

In this case, the data of the list is stored in the array of nodes called elements. This array will have nodes that have some data, but it will also have nodes that have not data at all. These are called the free nodes. All the nodes that hold data are chained like in a pointer-based linked list, but in this case we have positions in the array rather than pointers. The variable header has the index of the first element of the list, and that first node has the index of the second node, and so on.
All the nodes that are free also form a chain, in what is called the free list. In this case, variable frees has the index of the first node that is free, and that first node has the index of the next free node, and so on. In this implementation, the NULL pointer is represented by the index number -1. The diagram on the next page illustrates the organization of a singly linked list using arrays.

[image: image1.emf]Lin Bob Tim

header

Lin

0

1

2

3

4

Tim

Bob

ø

3

ø

-1

4

2

-1

header 1

frees

0

elements

Singly-Linked list

Implemented with arrays

curr_size

3

Linked List

Whit this information, answer the following questions.
a) (10 pts) Write the constructor for the class sl_list(). This constructor must chain all the nodes into a free list since the list will be initially empty. It must also set the current size to zero and the header to be the -1 index. Write your answer on the next page of this exam.

Problem 6. (Continuation)

// Constructor for the linkedlist using arrays

template <typename Item>

sl_list::sl_list() {

Problem 6. (Continuation)
b) (10 pts) Implement the method insert() which adds a new element at the header of the linked list. This function must first extract a free node from the free list, and then add it to the list of nodes in use. If there are no nodes in the free list, then you must throw an assertion. After extracting a node from the free list, the frees variable must be updated to reflect the index of the new next free node.
NOTE: You cannot create new nodes! You need to find them in the free list.

// inserts a new element at the head of the list

template <typename Item>

void sl_list::insert(const Item& obj) {

Problem 6. (Continuation)
c) (10pts) Implement the method erase() which removes an element from the linked list. This method returns the node that is freed back into the free list. This can be done by inserting the node at the head of the free list.
//removes an element from the list, and returns the node back to // the free list.

template <typename Item>

void sl_list::erase(const Item& obj) {

PAGE
12

_1109574838.ppt

Lin

Bob

Tim

header

Lin

0

1

2

3

4

Tim

Bob

ø

3

ø

-1

4

2

-1

header

1

frees

0

elements

Singly-Linked list

Implemented with arrays

curr_size

3

Linked List

