ICOM 4035 – Spring 2003– Exam # 3
Name: ____________________________ Section: ___________

ICOM 4035 – Data Structures

Exam III
April 30, 2003
Name:

Student Number:

Section: _____________________________

Instructions:

1. Write your name on all pages of this exam.

2. You have two hours to complete this exam. Use your time wisely.

3. This exam is worth 100 points, but it contains six problems totaling 110 points. Do as many problems as you can.

4. Read each question carefully, and show all the work you used to generate your answer.

5. To receive partial credit, you must show all the work you used to generate your answer.

GOOD LUCK!

SCORE

	1
	/15

	2
	/10

	3
	/10

	4
	/15

	5
	/30

	6
	/30

	TOTAL
	/100

Problem 1. (15 points) Understanding of the Binary Search Tree
Use the following Binary Search Tree T, storing integers, to answer the following questions:

[image: image1.emf]20

15

28

10

18

24 30

21

22

T

a) (5 pts) Which are the descendants of node 28?
Problem 1 (Continuation)

b) (5 pts) Which are the nodes at depth 2?
(5 pts) Draw the resulting BST after applying the operation T.delete(20) to the tree T.
Problem 2. (10 points) True or false about general course concepts
Use the Binary Search Tree T from problem 1 to determine whether each of the following statements is true or false. For those that you declare as false, you must explain your answer.

a) (5 pts) In an in-order tree traversal of tree T, the nodes will be visited in the following order: 20, 15, 10, 18, 28, 24, 21, 22, 30.

b) (5 pts) In a post-order tree traversal of tree T, the nodes will be visited in the following order: 30, 28, 24, 22, 21, 20, 18, 15, 10.
Problem 3. (10 pts) Big-Oh notation

Use Big-Oh notation to determine the complexity of the running time for each of the following code fragments. Briefly explain you answer:
a) (5 pts)

// Assume BST definition as in project 4

template <typename BSTData, typename Key>
void BinarySarchTree<BSTData,Key>::print_tree_aux
(BSTNode<BSTData> *node) const {

if (node == NULL){

return;

}

else {

cout << node->data << endl; //assume this line is O(1);

print_tree_aux(node->left_children);

print_tree_aux(node->right_children);

return;

}

}
b) (5 pts) // Assume definitions of classes as in project 3
bool Scheduler::find_event(const string& event_name,

 Event& the_event) const {

 for (List_Iterator<Room> iter1 = room_list.first();

 iter1.has_data(); iter1.next()){

 Room& the_room = iter1.get_data();

 for (List_Iterator<Event> iter2 = the_room.first_event();

 iter2.has_data(); iter2.next()){

 Event temp_event = iter2.get_data();

// Assume comparison of strings is O(1)
 if (temp_event.get_name() == event_name){

 the_event = temp_event;

 return true; // found

 }

 }

 }

 return false; // not found

 }

Problem 4. (15 points) Understanding of Binary Search Tree Container Class.
Trace the execution of the following operations on an instance of a Binary Search Tree container class (as in project 4) of string. Write your answer on the next page of this exam.
BinarySearchTree<string,string>;

T.insert(-1);
T.insert(10);

T.insert(-2);

T.insert(0);

T.erase(-1);

T.insert(3);

Pre_order_Iterator<string,string> = T.find(0);

cout << T.size() << endl;

T.insert(0);

T.erase(0);

T.insert(-4);

T.erase(10);

Problem 4. (Continuation)
Problem 5. (20 points) Understanding of Lists and Project number 3.

Use the interfaces of the classes List, Event, Room, and Scheduler from project number 3 of this course to answer the following questions.
a) (10 pts) Write private member function can_schedule() for the Room class which returns true if an event can be scheduled on the room, or false otherwise. An event can be scheduled if and only if :
i. The room has enough capacity to accommodate the event.
ii. The event does not conflict with events already scheduled.

The parameter for the event is the event to be tested.

bool Room::can_schedule(const Event& E){

Problem 5 (Continuation)

b) (10 pts) In the project 3, your insert() function would schedule an event in the first room that it would fit and had no conflicts. Write a function insert_best_fit() which inserts a new event into the room that best fits the event. Such room will be the room that wastes the least amount of space of all the candidate rooms in which the event can be scheduled. The function returns true if the event can be scheduled, or false otherwise.

bool Scheduler::insert_best_fit(const Event& E){

Problem 5 (Continuation)
c) (10pts) Write a function insert_least_used_fit() which inserts a new event into the room that is the least used fit from all the room that can accommodate the event. Such room will be the room that has the least number of events scheduled, and can schedule the event. The function returns true if the event can be scheduled, or false otherwise.

bool scheduler::insert_least_used(const Event& E){
Problem 6. (30 points) Understanding of Recursion and Binary Trees.
Consider the following declaration of a binary tree:

template <typename Item>

class binary_node {

Item data;

binary_node *left_child;

binary_node *right_child;

};

template <typename Item>

class BinaryTree {

public:

BinaryTree();

BinaryTree(const BinaryTree& T);

~BinaryTree();

const BinaryTree& operator=(const BinaryTree& T);

bool find(const Item& obj);

bool erase(const Item& obj);

void attach(const Item& obj);

void attach(const BinaryTree& T);

int count_full_children() const;

List<Item> find_leaves() const;

bool is_full_binary() const;

private:

binary_node<Item> *root; // root of the tree;

int count_full_children

(binary_node<Item> *node_ptr) const;

void find_leaves_aux

 (binary_node<Item> *node_ptr,

 sl_list<Item>& L);

bool is_full_binary

(binary_node<Item> *node_ptr) const;

};

Using this information, write the following three recursive functions.

NOTE: SOLUTIONS THAT ARE NOT RECURSIVE WILL GET AT MOST 50% OF THE POINTS IN EACH QUESTION.

Problem 6. (Continuation)
a) (10 pts) Write a recursive function count_full_children_aux() that returns the number of nodes that have non-NULL left and right children. The function will be called by the user using the root pointer of the tree as parameter:
count_full_children_aux(this->root);
template<Item>

int BinaryTree<Item>::count_full_children_aux
 (binary_node<Item> *node_ptr){
Problem 6. (Continuation)
b) (10 pts) Write a recursive auxiliary function find_leaves_aux() that fills a singly linked-list with the data element of all nodes that are leaves in the tree. The parameters to this function are: a) pointer to a node, and b) a reference to the linked list.
The function will be called by the user by using the root pointer of the tree as parameter and an empty list:
find_leaves_aux(this->root, the_list);
template<Item>

void BinaryTree<Item>::find_leaves_aux

 (binary_node<Item> *node_ptr,

 sl_list<Item>& L){
Problem 6. (Continuation)
c) (10pts) A binary tree is a full binary tree if:

i. the root has either zero children, or it has both its left and right children.

ii. the left sub-tree, if not NULL is a full binary tree.

iii. the right sub-tree, is not NULL is a full binary tree

Write a recursive function called is_full_binary_aux() that determines if a binary tree is a full binary tree. The function returns true if the tree is a full binary tree, or false otherwise. The function receives as parameter a pointer to the node currently under consideration as rooting a sub-tree. The function will be called by the user by using the root pointer of the tree as parameter:
is_full_binary_aux(this->root);
.
bool template<Item>

void BinaryTree<Item>::is_full_binary_aux
(binary_node<item> *node_ptr){

PAGE
9

_1099644104.ppt

20

15

28

10

18

24

30

21

22

T

