ICOM 4035 – Spring 2003– Final
Name: ____________________________ Section: ___________

ICOM 4035 – Data Structures

Final Exam
May 21, 2003
Name:

Student Number:

Section: _____________________________

Instructions:

1. Write your name on all pages of this exam.

2. You have two hours to complete this exam. Use your time wisely.

3. This exam is worth 100 points, but it contains six problems totaling 110 points. Do as many problems as you can.

4. Read each question carefully, and show all the work you used to generate your answer.

5. To receive partial credit, you must show all the work you used to generate your answer.

GOOD LUCK!

SCORE

	1
	/10

	2
	/10

	3
	/10

	4
	/20

	5
	/20

	6
	/30

	7
	/10

	TOTAL
	/100

Problem 1. (10 points) True or false about general course concepts
Determine whether each of the following statements is true or false. For those that you declare as false, you must explain your answer.

a) (5pts) When implementing a hash table, even if we choose a bad hash function we always get O(1) complexity for all search operations in the worst-case scenario.
b) (5pts) Consider the following template function:
template <typename Object>

bool max(const Object& a, const Object& b){

// find the max between a and b

if (a <= b)

return b;

else

return a;
}
The GNU C++ compiler used in this class will generate correct code without problems for any data type that is bound to typename Object
Problem 2. (10 pts) Big-O notation

Use Big-O notation to determine the complexity of the running time for each of the following code fragments. Briefly explain you answer:
a) (5 pts)

bool array_runnner(int data[], int n){

for(i=0; i < (n-1); ++i){

cout << data[i] << endl;

for (j=0; j < 2000; ++j)

k = 0

while(k < n){

cout << “i, j, k” << i << “ “ << j
<< “ “ << k << endl;

++k;

}

}

}

}

b) (5 pts)
//s is a name to be found in a list L
void find_name(const string s, const List<string>& L){

List_Iterator<string> iter = L.find(s);

if (iter.has_data()){

cout << “Name: “ << s << “ is on the list.”

<< endl;

}

else {

cout << “Name: “ << s << “ is not on the list.”

<< endl;

}

}

Problem 4. (10 points) Understanding the Stack container class.
Trace the execution of the following operations on an instance of an array-based Stack container class of string. Write your answer on the next page of this exam.
Stack<string> S;
S.push(“Tom”);

S.push(“Bob”);

S.push(“Ned”);

S.pop();

S.push(S.top());

S.pop();

cout << S.size() << endl;

cout << S.top() << endl;
S.make_empty();

S.push(“Ron”);

S.push(S.top());

cout << S.top() << endl;

Problem 4. (Continuation)
Problem 4. (20 points) Understanding of Project number 4.
Use the interfaces of the classes from project number 4 of this course to answer the following questions:
a) (10 pts) Extend the class Movie by adding a method update_cast(). This method receives a list of names to be added to the cast list. The function cannot add duplicates to the existing cast list, therefore, it must check if each name in the new list is already in the cast list, and ignore repeated ones. The function must return the number of names that where added to the cast list of the movie.

int Movie::update_cast(const List<Name>& L){

Problem 4 (Continuation)
b) (10pts) Extend the functionality of the class DataManager by writing a function find_movies_by_stars(). This function receives as parameters:

· stars – an array with the names of the actors

· stars_len – length of the array with the name of actors.

The function returns a list with all the movies in which all of the stars appear in the cast list. No duplicate movies allowed in the result list.
List<Movie> DataManager::find_movies_by_stars
(Name stars[], int stars_len) const{

Problem 5. (20 points) Understanding of Binary Search Trees
Consider the following example Binary Search Tree.

[image: image1.emf]20

15

28

10

18

24 30

21

22

T

Using this example as a guide, extend the functionality of BinarySearchTree container class that we have discussed in class by writing the following recursive functions:

(NOTE: SOLUTIONS THAT ARE NOT RECURSIVE WILL ONLY GET 50% OF THE TOTAL CREDIT).
Problem 5 (Continuation)

a) (10 pts) Write a recursive function get_path_aux() that fills a queue with the values of nodes in the path from the root of the tree to a node X. The values must be in the path order from the root to node X. For example, in the sample tree T, a call to T.get_path(21) returns a queue with the following values: {20, 28, 24, 21}. Here 20 is the value at the head and 21 is the value at the tail. The function receives as parameters the pointer of the node being visited, the key of the value X, and a reference to the queue to store the data in the nodes.
template<typename Item, typename Key>

void BinarySearchTree::get_path_aux(binary_node<Item> *node_ptr,

const Key& X, Queue<Item>& Q) const {
Problem 5 (Continuation)
b) (10pts) Write a recursive function range_values_aux() that fills a singly-linked list with all the values in the tree that lie inside a range [X1, X2]. The parameters to the function are a pointer to the node being visited, the list with results, and the two values that form the range. A value Y will be added to the list if and only if X1 <= Y <= X2. For example, a call of the form T.range_values_aux(this->root, L, 5, 19) will fill the list L with {18,10,15}.
template <typename Item, typename Key>

void BinarySearchTree<Item,Key>::range_values_aux
(binary_node<Item>* node_ptr, sl_list<Item>& L,

 const Key& X1, const Key& X2) const {

Problem 6. (30 points) Understanding of List structures
Using the interfaces of the singly-linked list, the sorted-singly-linked list, and stack discussed in this class, answer the following questions:

a) (15 pts) Write a function string_tokenizer()that extracts words from an array of characters, and stores them in a singly-linked list in the order in which they appear in the array. Inside the array, words are separated by special character called the token. For example in the array:
	J
	O
	B
	\n
	N
	E
	D
	\n
	J
	I
	L
	\n
	
	
	

 0 1 2 3 4 5 6 7 8 9 10 11

The token is the character \n, and the function returns the list with the values:

L = {Job, Ned, Jil}, in that order.The arguments to the function are the array of characters, the length of the array, and the token character. You may assume the existence of a function make_str(), which takes an array of character and the length of the array, and converts this to a string.
Hint: Use to stack to keep the strings before putting them into the result list
Write your answer on the next page, please!

Problem 6 (Continuation)
sl_list<string> string_tokenizer(char str[], int str_len, char token){
Problem 6 (Continuation)

b) (15 pts) Write an O(N) function print_join() which prints the contents of two sorted singly-linked in the sorted order. The arguments to the function are the two sorted lists. For example, if the input lists are L1 = {Bob, Jil, Ned}, L2 = {Al, Bob, Cal, Xi}, then the output will be:
Al

Bob

Bob

Cal

Jil

Ned

Xi
The function must have a complexity of O(N), where N is the number of elements in
the larger of the two input list. Solutions that are O(N*N) because they insert all the elements into a new list and then print it, will only get a maximum of 5 points.
Write your answer on the pages of the exam please!
Problem 6 (Continuation)

void print_join(const SortedSLL<string>& L1,

 const SortedSLL<string>& L2){

Problem 7. Course Evaluation (10 points)
Answer the following questions:

1. What aspects of this course you liked the most?

2. What aspects of this course you disliked the most?

PAGE
12

_1099644104.ppt

20

15

28

10

18

24

30

21

22

T

