

Department of Electrical and Computer Engineering

University of Puerto Rico
Mayagüez Campus

ICOM 4035 – Data Structures
Fall 2003

Project #1: Matrix and Vector Algebra

Due Date: 11:59 PM, September 12, 2003

Objectives
1. Understand the design, implementation, usage and limitation of a Matrix ADT and

Vector ADT based on fixed-sized two-dimensional arrays.
2. Gain experience implementing abstract data types using already developed data

structures.
3. Gain experience with object-oriented programming abstractions, especially constructors

and operator overloading

Overview
You will implement and test three classes: Matrix, Vector and Vector3D. Class Matrix
implements an matrix with n rows and m columns; this is often call a n x m matrix. Matrix are
often depicted as follows:

11 12 13 14

21 22 23 24

31 32 33 34

a a a a
a a a a
a a a a

 
 
 
  

This matrix has size 3 x 4, and each element ija is a member of the matrix. Notice that the
notation ija , denotes the element at row i, column j. For example, element 23a is the element at
row 2 and column 3. Likewise, element 31a is the element at row 3, column 1. For convenience,
we often write a matrix M as []ijM a= to indicate that is a matrix with elements ija . Notice that
the number of rows and columns do not need to be the same, but if they are the matrix is called
square matrix. You class will keep the current number of row and columns in the matrix.
However, each matrix will have a maximum number of rows and columns, defined by the
constants Matrix::MAX_ROWS and Matrix::MAX_COLUMNS (these are defined in the file
Matrix.h)

Your program will implement the following operations on the Matrix class:

1. Matrix addition

2. Matrix subtraction
3. Matrix multiplication
4. Matrix scalar multiplication
5. Matrix transpose

Each of these operations is defined below.

Matrix addition
Given two matrices []ijA a= and []ijB b= , then the operation A +B will produce a new matrix

[]ijC c= , where each value is computed as: ij ij ijc a b= + . In this case, both matrices A and B
must have the same numbers of rows and columns. Otherwise, you will program will throw
an assertion. The resulting matrix C will have the same number of rows and columns as
matrices A and B have.

Matrix subtraction
Given two matrices []ijA a= and []ijB b= , then the operation A -B will produce a new matrix

[]ijC c= , where each value is computed as: ij ij ijc a b= − . In this case, both matrices A and B
must have the same numbers of rows and columns. Otherwise, you will program will throw
an assertion. The resulting matrix C will have the same number of rows and columns as
matrices A and B have.

Matrix multiplication
Given a matrix []ijA a= , of size m x p, and a matrix []ijB b= , of size p x n, then the
multiplication operation A * B will produce a new matrix []ijC c= , of size m x n, where each
value is computed as:

1 1 2 2 3 3 ...ij i j i j i j ip pjc a b a b a b a b= + + + + .
In this case, the number of columns in matrix A (the value p) must be equal to the number of
rows in B. Otherwise, you will program will throw an assertion. The resulting matrix C will
have the same number of rows as matrix A (the value m) and the same number of columns as
matrix B (the value n).

Matrix scalar multiplication
Given a matrix []ijA a= and a number r, then the operation r * A will produce a new matrix

[]ijC c= , where each value is computed as: *ij ijc r a= . The resulting matrix C will have the
same number of rows and columns as matrix A.

Matrix transpose
Given a matrix []ijA a= , of m x n, then the transpose of A, denoted as AT , is an operation that
will produce a new matrix []ijB b= , of size n x m, where each value is computed as: ij jib a= .
Thus, the number of rows in B is equal to the number of columns in A, and the number of
columns in B is equal to the number of rows in A.

Vector class
The Vector class is a class derived from the class Matrix. Vector implement the functionality of
n-dimensional vector. An n-dimensional vector can be represented as a n x 1 matrix:

11

21

31

41

a
a
a
a

 
 
 
 
 
 

In this case, the vector is a 4 x 1 matrix, representing a point in a space with four dimensions. It
is often convenient to express a vector V in terms of its dimensions: V = (a1, a2, …, an) The
Vector class will have method to access and modify each of the components of its dimensions. In
addition, the Vector class will implement the following operations:

1. Vector length
2. Vector inner (dot product)
3. Vector angle

The semantics of these operations is defined as follows.

Vector length
Given a vector V = (a1, a2, …, an), the length of the vector, denoted by ||V||, is defined as:

2 2 2
1 2 ... nV a a a= + + +

Vector inner (dot) product
Given vectors V1 = (a1, a2, …, an), and V2 = (b1, b2, …, bn), the inner (dot) product between V1
and V2 , denoted as V1 • V2 , is defined as:

1 2 1 1 2 2 ... n nV V a b a b a b• = + + +

Vector angle
Given vectors V1 = (a1, a2, …, an), and V2 = (b1, b2, …, bn), the angle θ between V1 and V2 , is a
number for which:

1 2

1 2

cos()
|| || || ||

V V
V V

θ •
=

The number θ is called the arc cosine, or cosine inverse, and can be computed as follows:
1 1 2

1 2

cos
|| || || ||

V V
V V

θ −  •
=  

 

C++ provides a function called acos() than can be used to compute the arc cosine.

Vector 3D Class
The class Vector3D is derived from the Vector class, and it implements a vector in a three
dimensional space. In this case, any instance of the Vector3D will have three dimensions, and
hence is a 3 x 1 matrix:

V =
11

21

31

a
a
a

 
 
 
  

For example, the points P1 = (1,0,1) and P2 = (1,0,0) are represented, respectively, as:
















=

1
0
1

1P















=

0
0
1

2P

In the Vector3D class, you will implement the cross product operator, and you will have two
versions of it. The first version will be a member function that computes the cross product
between two vectors v1 and v2, and assigns the result to v1. The second version will be a non-
member function that computes the cross product between v1 and v2, and then assigns the result
to a new vector v3.

Vector Cross Product
Given vectors V1 = (a1, a2, a3), and V2 = (b1, b2, b3), the cross product between V1 and V2,
denoted as V1 × V2 , is a vector V3 = (c1, c2, c3) such that

12213

31132

23321

babac
babac
babac

−=
−=
−=

Distribution Files

You can go to the class web page and download a tar file containing all the files related with this
project. Just access the link named Projects, and download the sources files associated with the
link: Project #1– Matrix and Vector Algebra.

You implementation will consist of adding C++ code to implement three modules: Matrix.cpp,
Vector.cpp, and Vector3D.cpp. You will receive all the .h files with declaration of the Matrix,
Vector and Vector3D classes. In addition, you will be provided with a main program that uses
the Matrix, Vector, and Vector3D classes, and interacts with the user to ask his/her input on the
operations to be performed. Finally, you will be given a Makefile with all the commands needed
to compile and submit your project.

1. Object.h – declaration of the Object type that will be stored in the matrix or vector.
2. Matrix.h – declaration of the Matrix class.
3. Matrix.cpp – implementation of the Matrix class. YOU MUST IMPLEMENT THE

METHODS TO APPEAR IN THIS FILE.

4. Vector.h – declaration of the Vector class.
5. Vector.cpp – implementation of the Vector class. YOU MUST IMPLEMENT THE

METHODS TO APPEAR IN THIS FILE.
6. Vector3D.h – declaration of the Vector3D class.
7. Vector3D.cpp – implementation of the Vector3D class. YOU MUST IMPLEMENT

THE METHODS TO APPEAR IN THIS FILE.
8. matrix_main.cpp – main program to the Matrix, Vector and Vector3D classes. DO

NOT MODIFY THIS FILE!!!!
9. Makefile – file with the commands to compile and submit you project.
10. test1.in – test input file 1.

NOTE: YOU PROGRAM MUST PASS THIS FILE WITHOUT ERRORS IN
ORDER TO BE CONSIDERED A RUNNING PROGRAM.

11. test1.out – expected output from test input file 1.
12. test2.in – test input file 2.
13. test2.out – expected output from test input file 2.
14. test3.in – test input file 3.
15. test3.out – expected output file from test input file 3.
16. prof_matrix_main – professor’s version of the matrix_main program. NOTE: Known

to be working correctly.

PROJECT DUE DATE: 11:59 PM – September 12, 2003.

