

Department of Electrical and Computer Engineering

University of Puerto Rico
Mayagüez Campus

ICOM 4035 – Data Structures
Fall 2003

Project #2: Sorted Singly-Linked List Container Class

Due Date: 11:59 PM - October 9, 2003

Objectives
1. Understand the design, implementation and use of a sorted singly- linked lists class

container.
2. Gain experience implementing applications using layers of increasing complexity and

fairly complex data structures.
3. Gain further experience with object-oriented programming concepts, specially

inheritance and virtual methods.

Overview
You will design, implement and test a container class the sorted singly-linked list, to be named
here on as SortedSLL. The sorted will be in increasing order. This class will inherit all the public
methods from an abstract class called the list container class. Basically, class list indicates the
operations that can be performed on a any type of list container class. Meanwhile, SortedSLL
implements the operations specified in list for the case of a singly-linked list that is kept sorted at
all times in increasing order. You need to assume that the value type stored in the SortedSLL
supports the relational operators: >, <, >=, <=, ==, !=.

In addition, you need to implement an iterator class called the SortedSLLIterator. This iterator
class will inherit from the abstract class Iterator, which declares the kind of operations to be
supported by an iterator.

SortedSLL Specification
The following is the specification of the class SortedSLL.

Private members

• header – a pointer to a list node (class list_node). When the list is empty, header is
NULL. Otherwise, header points to the first node in the list that is holding data.

Public members

• value_type – typedef for the value type of the SortedSLL. Must be equal to the
value_type declared in class list_node. Represents the data type for the data in a node.

• size_type – typedef for the size type indicating the size of the SortedSLL. Must be
equal to the std:size_type value.

• Default constructor – creates a new SortedSLL empty list (i.e. header is NULL).
• Copy constructor – creates a new list that is a copy of another SortedSLL, which is

passed by constant reference.
• Destructor – removes all elements in the SortedSLL, and make the header equal to

NULL. This method cannot create memory leaks.
• Copy Assignment operator – removes all current elements in the SortedSLL, and then

makes this SortedSLL equal to a SortedSLL passed by constant reference. This method
must check for self-assignment.

• size() – returns the current number of elements in the SortedSLL. This is a virtual
function.

• insert() – adds a new element to the SortedSLL, and keeps the increasing sorted order.
This function must do an in-place insert operation. This is a virtual function.

• is_empty() – returns true if this SortedSLL is empty (i.e. header == NULL) or false
otherwise. This is a virtual function.

• make_empty() – erases all the elements in the SortedSLL and makes the header equal to
NULL. This is a virtual function.

• erase() – removes the first copy it finds from an element obj from the SortedSLL, and
keeps the sorted order. NOTE: THIS FUNCTION MUST BE AN IN-PLACE
OPERATIONS, MEANING THAT YOU MUST REMOVE THE ELEMENT
DIRECTLY FROM THE LIST. SOLUTIONS THAT COPY THE LIST TO ANOTHER,
AND SKIP THE ELEMENT TO BE DELETED WILL BE CONSIDERED AS NOT
RUNNING. This is a virtual function.

• find() – finds a element obj in the SortedSLL and returns a pointer to an iterator that is
positioned on the node where obj is stored. The function will find the first occurrence of
the object. The pointer must be a valid pointer to a SortedSLLITerator object. This is a
virtual function. The pointer cannot be NULL. If the object is not found in the list, the
function must return an empty iterator, which is an iterator whose anchor node points to
NULL (see specification of SortedSLLIterator below).

SortedSLLIterator Specification
The following is the specification of the SortedSLLIterator.

Private Members

• anchor – pointer to the first node where the iterator is originally positioned when it is
first created.

• current – pointer to the node where the iterator is currently positioned.
• Constructor – build an iterator from a pointer to a node in the SortedSLL. This node can

be NULL, and this represents an empty iterator (one that is associated with no data).

Public Members

• get_data() – returns a reference to the data element in the node where the iterator is
currently positioned. This is a virtual function.

• next() – moves the iterator to the next node in the SortedSLL. This operation is only
executed if current is not NULL. This is a virtual function.

• has_data() – returns true if the pointer current different from NULL, meaning that the
iterator is positioned on a node with data. This is a virtual function.

• reset() – sets the value of the current pointer to be equal to anchor. This is a virtual
function.

Distribution Files
You can go to the class web page and download a tar file containing all the files related with this
project. Just access the link named Projects, and download the sources files associated with the
link: Project #2– Sorted Singly-Linked List.

You implementation will consist of adding C++ code to implement two modules: SortedSLL.h,
and Sorted.cpp.You will receive all the .h files with declaration of the abstract list class and the
abstract iterator class.. In addition, you will be provided with a main program that uses the
SortedSLL class, and interacts with the user to ask his/her input on the operations to be
performed. Finally, you will be given a Makefile with all the commands needed to compile and
submit your project.

1. list.h – interface for the singly linked list.
2. iterator.h – interface for the iterator class.
3. SortedSLL.h – interface for the sorted singly linked list container class. YOU MUST

WRITE THE DECLARATION OF THE METHODS TO APPEAR IN THIS FILE.
4. SortedSLL.cpp – implementation of the interface for the sorted singly linked list

container class. YOU MUST IMPLEMENT THE METHODS TO APPEAR IN THIS
FILE.

5. list_test.cpp –test program for the sorted singly-linked list container.
6. Makefile – file with the commands to compile and submit you project.
7. test1.in – test input file 1.

NOTE: YOU PROGRAM MUST PASS THIS FILE WITHOUT ERRORS IN ORDER
TO BE CONSIDERED A RUNNING PROGRAM.

8. test1.out – expected output from test input file 1.
9. test2.in – test input file 2.
10. test2.out – expected output from test input file 2.
11. test3.in – test input file 3.
12. test3.out – expected output file from test input file 3.
13. prof_list_test – professor’s version of the list_test program. NOTE: Known to be working

correctly.

PROJECT DUE DATE: 11:59 PM – October 9, 2003.

