
MOCHA: A Self-Extensible Database Middleware System for
Distributed Data Sources�

Manuel Rodrı́guez-Martı́nez
Department of Computer Science

University of Maryland, College Park
manuel@cs.umd.edu

Nick Roussopoulos
Department of Computer Science

University of Maryland, College Park
nick@cs.umd.edu

Abstract
We present MOCHA, a new self-extensible database middleware
system designed to interconnect distributed data sources. MOCHA
is designed to scale to large environments and is based on the idea
that some of the user-defined functionality in the system should
be deployed by the middleware system itself. This is realized by
shipping Java code implementing either advanced data types or tai-
lored query operators to remote data sources and have it executed
remotely. Optimized query plans push the evaluation of power-
ful data-reducing operators to the data source sites while execut-
ing data-inflating operators near the client’s site. The Volume
Reduction Factor is a new and more explicit metric introduced in
this paper to select the best site to execute query operators and is
shown to be more accurate than the standard selectivity factor alone.
MOCHA has been implemented in Java and runs on top of Informix
and Oracle. We present the architecture of MOCHA, the ideas be-
hind it, and a performance study using scientific data and queries.
The results of this study demonstrate that MOCHA provides a more
flexible, scalable and efficient framework for distributed query pro-
cessing compared to those in existing middleware solutions.

1 Introduction
Database middleware systems are used to integrate collec-
tions of data sources distributed over a computer network.
Typically, these type of systems follow an architecture cen-
tered around a data integration server, which provides client
applications with a uniform view and access mechanism to
the data available in each source. Such an uniform view of
the data is realized by imposing a global data model on top of
the local data model used by each source. There are two main
choices for deploying an integration server: a commercial
database server or a mediator system. In the first approach, a
commercial database server is configured to access a remote
data source through a database gateway, which provides an
access method mechanism to the remote data. In the second
approach, a mediator server specially designed and tailored

�This research was sponsored by DOD/Lucite Contract CG9815.

for distributed query processing is used as the integration
server. The mediator utilizes the functionality of wrappers
to access and translate the information from the data sources
into the global data model. In both of these existing types of
middleware solutions the user-defined, application-specific
data types and query operators defined under the global data
model are contained in libraries which must be linked to the
clients, integration servers, gateways or wrappers deployed
in the system. There are numerous examples of systems that
follow this architecture, some of which are Oracle8i [Ora99],
Informix Universal Server [Inf97], TSIMMIS [CGMH+94],
DISCO [TRV96] and Garlic [RS97].

Most of the research on database middleware systems car-
ried out during the past years has focused on the problems of
translation and semantic integration of the distinct data col-
lections. In this paper, however, we deal with two impor-
tant problems which have received little attention from the
research community: (1) the deployment of the application-
specific functionality1, and (2) the efficient processing of
queries with user-defined operators. These are critical prob-
lems since they affect the scalability, ease-of-use, efficiency
and evolution of the system. Nevertheless, we are not aware
of any work that has effectively addressed the first issue, and
the second one is just beginning to receive more attention
from the community [RS97, HKWY97, GMSvE98, MS99].

In order to effectively address these two important issues
we have designed and implemented MOCHA (Middleware
Based On a Code SHipping Architecture), a novel database
middleware system designed to interconnect hundreds of
data sources. MOCHA is built around the notion that the
middleware for a large-scale distributed environment should
be self-extensible. A self-extensible middleware system is
one in which new application-specific functionality needed
for query processing is deployed to remote sites in automatic
fashion by the middleware system itself. In MOCHA, this
is realized by shipping Java code containing new capabili-
ties to the remote sites, where it can be used to manipulate
the data of interest. A major goal behind this idea of auto-
matic code deployment is to fill-in the need for application-

1These are complex data types and query operators not generally pro-
vided by general purpose commercial systems, but rather custom-built for a
particular application by third-party developers.

specific processing components at remote sites that do not
provide them. These components are migrated on demand
by MOCHA from site to site and become available for im-
mediate use. This approach sharply contrasts with existing
solutions in which administrators need to manually install all
the required functionality throughout the system.

MOCHA capitalizes on its ability to automatically deploy
code in order to provide an efficient query processing ser-
vice. By shipping code for query operators, MOCHA can
generate efficient plans that place the execution of powerful
data-reducing operators (”filters”) on the data sources. Ex-
amples of such operators are aggregates, predicates and data
mining operators, which return a much smaller abstraction
of the original data. On the other hand, data-inflating opera-
tors that produce results larger that their arguments are eval-
uated near the client. Since in many cases, the code being
shipped is much more smaller than the data sets, automatic
code deployment facilitates query optimizationbased on data
movement reduction, which can greatly reduce query execu-
tion time. Again, this is very different from the existing mid-
dleware solutions, which perform expensive data movement
operations since either all data processing occurs at the inte-
gration server, or a data source evaluates only those operators
that exist a priori in its environment [RS97].

In this paper we describe a prototype implementation of
MOCHA which has been operational at the University of
Maryland since the early Spring of 1998. MOCHA is cur-
rently been considered as a middleware solutionfor the NASA
Earth Science Information Partnership (ESIP) Federation.
MOCHA is written in Java and supports major database
servers, such as Oracle and Informix, file servers and XML
repositories. We argue that MOCHA provides users with
a more flexible, scalable and efficient framework to deploy
new application-specific functionality than those used in ex-
isting middleware solutions. Our experiments show that
when compared with the processing schemes used in previ-
ous solutions, the query processing framework proposed in
MOCHA can substantially improve query performance by a
factor of 4-1 in the case of aggregates and 3-1 in the case of
projections, predicates, and distributed joins. These experi-
ments were carried out on the MOCHA prototype using data
and queries from the Sequoia 2000 Benchmark [Sto93].

The remainder of this paper is organized as follows. Sec-
tion 2 further describes the shortcomings in existing middle-
ware solutions and motivates the need for MOCHA. Section
3 presents the architecture of MOCHA and our solutions to
the problems presented in section 2. Section 4 describes the
proposed query processing framework for MOCHA. Section
5 contains a performance study of the MOCHA prototype.
Finally, our conclusions are presented in section 6.

2 Motivation for MOCHA
Given the immense popularity of the World Wide Web, the
continuous growth of the Internet, and the ever increasing
number of corporate intranets, database middleware will be

required to interconnect hundreds of data sites deployed over
these networks. The data sets stored by many of these sites
will be based on complex data types such as images, audio,
text, geometric objects and even programs. Given this sce-
nario, we argue that middleware solutions for these kind of
environments will be successful only if they can provide:
(1) scalable, efficient and cost-effective mechanisms to de-
ploy and maintain the application-specific functionality used
throughout the system, and (2) adequate query processing
capabilities to efficiently execute the queries posed by the
users. We argue that the existing middleware solutions fall
short from providing adequate support for these two require-
ments, and we now proceed to justify this argument.

2.1 Deployment of Functionality
In order to deploy new application-specific functionality into
a system based on mediators, or database servers (using ei-
ther gateways or a client/server scheme), the data structures,
procedures, and configuration files that contain the imple-
mentation of the new types and query operators are collected
into libraries which must be installed at each site where a
participating integration server, gateway, wrapper or client
application resides. This is the scheme followed by Ora-
cle 8i [Ora99], Informix [Inf97], Predator [SLR97], Jaguar
[GMSvE98], TSIMMIS [CGMH+94], DISCO [TRV96] and
Garlic [RS97]. We argue that as the number of sites in the
system increases, such an approach becomes impractical be-
cause of the complexity and cost incurred in maintaining the
software throughout the system.

To illustrate this point, consider an Earth Science applica-
tion that manipulates data stored and maintained in sites dis-
tributed across the United States. Suppose there is one data
site per state, which holds data scientists gathered from spe-
cific regions within that state. As part of its global schema,
the system contains the following relation:
Rasters(time : Integer; band : Integer;

location : Rectangle; image : Raster);

Table Rasters stores raster images containing weekly en-
ergy readings gathered from satellites orbiting the Earth. At-
tribute time is the week number for the reading, band is the
energy band measured, location is the rectangle covering
the region under study and image is the raster image itself.

To implement the schema for relation Rasters in exist-
ing middleware solutions, it would be necessary to install
the libraries containing the code, mostly C/C++ code, for
the Rectangle and Raster data types on each site where
a client, integration server, wrapper or gateway interested in
using table Rasters resides. This translates into at least fifty
installations for the wrappers and gateways, plus as many
more as are necessary for the integration servers and clients.
The administrators of the system will have to access all these
sites and manually perform these installations. Moreover, it
is often the case that the functionality has to be ported to dif-
ferent hardware and operating system platforms. As a result,
developers must invest extra effort in making the function-
ality work consistently across platforms. Furthermore, sci-

entists are frequently experimenting with new or improved
methods to compute properties about their data, such as av-
erages on the amount of energy absorption. Therefore, many
users will not be satisfied with some of the code that has
been already deployed, and will require for existing opera-
tors to be upgraded or replaced by new ones. Thus, it be-
comes necessary to have a scalable and efficient mechanism
to keep track of and maintain the deployed code base in the
system. Clearly, the logistics in such a large-scale system are
formidable for an approach based on manual installationsand
upgrades of application-specific functionality to be feasible.

2.2 Efficient Query Processing

In the context of large-scale distributed environments, it is
unrealistic to assume that every site has the same query ex-
ecution capabilities. Therefore, many existing middleware
solutions use a query processing framework in which most
operators in a query are completely evaluated by the integra-
tion server [Ora99, Inf97, CGMH+94, TRV96]. The wrap-
pers and gateways are mainly used to extract data items from
the sources, and translate them into the middleware schema
for further processing at the integration site. This approach
for query processing is often called data shipping [FJK96]
because data is moved from the source to the query process-
ing site. In the alternative approach, called query shipping
[FJK96], one or more of the query operators are evaluated
at the data sources, and only the results are sent back to the
integration server. A third approach, called hybrid shipping
[FJK96], combines query and data shipping, and is shown to
be the superior alternative. Garlic [RS97] exploits this lat-
ter approach in a powerful framework in which the evalua-
tion of some of the query operators is “pushed” to the data
source. However, this framework is somewhat limited since
it can only be applied to those operators that are already im-
plemented at the data source, and the integrationserver must
evaluate any remaining operator(s) in the query. Thus, in
all these middleware solutions, query operator placement is
severely restricted by the availability of the code implement-
ing the operators used in a query. In many situations, this can
easily lead to worst-case scenarios in which a query plan dic-
tates the transfer of very large amounts of data (megabytes
or more!) over the communications network, making data
transmission a severe performance bottleneck.

We illustrate this point with the Earth Science application
introduced in section 2.1. Let the data site in the State of
Maryland contain 200 entries in table Rasters. For this
table, attributes time and band are 4-byte integers, attribute
location is a 16-byte record and attribute image is a 1MB
byte array. A user at the State of Virginia poses the following
query for the data site at the State of Maryland:

SELECT time; location; AvgEnergy(image)
FROM Rasters

WHERE AvgEnergy(image)< 100

This query will retrieve the time, location and average en-
ergy reading for all entries whose average energy reading is

less than the constant 100. Function AvgEnergy() returns
a 8-byte double precision floating point number, so the size
of the records in the result is just 28 bytes. Clearly, the best
way to execute this query is to let the data source at Mary-
land read every tuple from table Rasters, evaluate function
AvgEnergy(), evaluate the qualification clause, and perform
all the projections in the query, returning only the final re-
sults to the integration site in Virginia. Notice that even if all
tuples in table Rasters satisfy the qualification clause, data
movement still is negligible since 200 tuples � 28 bytes is
approximately 5KB! However, this efficient approach is fea-
sible only if the code for AvgEnergy() exists at the Mary-
land data site. Otherwise, this query must be evaluated by
first shipping the attributestime, locationand image, con-
tained in every tuple in table Rasters from the data site in
Maryland to the integration site in Virginia, and then per-
forming the operations as mentioned before. Now, consider
the cost of the operation just described. The system is mov-
ing roughly 200MB worth of data over a wide area network,
an operation that will take minutes or even hours to com-
plete since the bandwidth available to an application in most
wide area links is very limited, often under 1Mbps. Clearly,
the lack of adequate query processing functionality can eas-
ily lead to poor performance because a middleware system
might be restricted to use an inefficient query processing
strategy simply because the functionality required to use a
superior one is not available where it is needed. Since it is
highly improbable that all the functionalityneeded to process
every query posed will be available everywhere, existing so-
lutions are of limited use in large-scale environments. Notice
that although many systems indeed provide the capabilities
to manually add the code for user-defined types and operators
into the wrappers [CGMH+94], gateways [Inf97], or remote
data servers [SLR97, GMSvE98, MS99], this approach sim-
ply cannot scale for the reasons already discussed in section
2.1. Thus, the query processing framework used in existing
solutions is limited and ill-suited for a large-scale environ-
ment in which users have diverse needs for processing data.

3 MOCHA Architecture

We have designed MOCHA around two fundamental prin-
ciples that will enable it to overcome the shortcomings of
previous middleware solutions. The first principle is that
all application-specific functionality needed to process any
given query is to be delivered by MOCHA to all interested
sites in automatic fashion, and this is realized by shipping
the Java classes containing the required functionality. The
second principle is that each query operator is to be evalu-
ated at the site that results in minimum data movement. The
goal is to ship the code and the computation of operators
around the system in order to minimize the effects of the
network bottleneck. We argue that this framework provides
the foundation for a more scalable, robust and efficient mid-
dleware solution. Figure 1 depicts the organization of the
major components in the architecture for MOCHA. These

are the Client Application, the Query Processing Coor-
dinator (QPC), the Data Access Provider (DAP) and the
Data Server. We now elaborate on the principles and design
choices for MOCHA which form the basis for our arguments.
A more detailed description can be found in [RMR00b].

������

��	 ��	 ��	

��
�� �������� ���

����������

�	�

������

����

����������

�������

����������

�����

Figure 1: MOCHA Architecture

3.1 Client Application

MOCHA supports three kinds of client applications: 1) ap-
plets, 2) servlets, and 3) stand-alone Java applications. We
expect applets to be the most commonly deployed clients in
the system, used as the GUI for the users to pose queries
against the data collections and visualize their results. Servlets
can be used to interact with users that do not use applets
with their Web browsers. The servlet receives the requests
from the browser, interacts with MOCHA to query the data
sources, and formats all results as either HTML or XML data.
Finally, stand-alone Java applications will likely be used by
administrators or software developers, who will need to carry
out complex tasks such as system configuration and tuning,
catalog management or distributed software debugging, to
name a few. MOCHA provides a set of Java libraries with
the APIs necessary for the client to easily interact with the
system. These APIs contain all the required infrastructure to
load the code containing the application-specific components
necessary to manipulate the query results.

3.2 Query Processing Coordinator (QPC)

The Query Processing Coordinator (QPC) is the middle-tier
component that controls the execution of all the queries and
commands received from the client applications. QPC pro-
vides services such as query parsing, query optimization,
query operator scheduling, query execution and monitoring
of the entire execution process. QPC also provides access
to the metadata in the system and to the repository contain-
ing the Java classes with application-specific functionality
needed for query processing. During query execution, the
QPC is responsible for deploying all the necessary function-
ality to the client application and to those remote sites from
which data will be extracted.

Client API

SQL Parser XML Query
Parser

Procedural
InterfaceOptimizer

Catalog Manager

Execution Engine

SQL & XML
Iterators

Procedure
Executor

DAP API

Code
Loader

Figure 2: Organization of the QPC

The internal components of the QPC are depicted in Figure
2. The Client API serves as the entry point to accept the re-
quests from a client application. The QPC offers three main
data processing services. The first one provides access to
distributed data sites which are modeled as object-relational
sources. QPC provides the infrastructure to perform oper-
ations such as distributed joins and transactions over these
sources. The requests for these kind of services are encoded
as SQL queries, which are first pre-processed by the SQL
parser in the QPC. The second data processing service pro-
vided by QPC allows users to directly query the content of
XML repositories. XML is rapidly becoming a very impor-
tant technology and we felt that MOCHA should support na-
tive access to XML repositories without the burden of first
mapping them to another data model. We are currently de-
veloping the infrastructure that will enable the QPC to pro-
cess queries over the XML repositories. Finally, since many
sources, such as Web servers or file systems, do not provide
a query language abstraction, the QPC provides a procedural
interface through which operations such as HTTP requests,
ftp downloads or proprietary file system access requests can
be issued to access these data sources.

One of the most important components of the QPC is its
query optimizer, which generates the best strategy to solve
the queries over the distributed sources. The optimizer fol-
lows a dynamic programming model for query optimization
similar to those in System-R [SAC+79] and R* [ML86]. We
will defer further details on query optimization until section
4. For now, it suffices to say that the plan generated by the
optimizer explicitly indicates which are the operators to be
evaluated by the QPC and those to be evaluated at the remote
data sites. In addition, the plan indicates which Java classes
need to be dynamically deployed to each of the participants
in the query execution process. All plans are encoded and
exchanged as XML documents, and the interested reader can
find examples of their structure in [RMR00a]. The QPC uses
the services of the Catalog Manager module to retrieve from
the catalog all relevant metadata for query optimization and
code deployment. Section 3.5 briefly describes the organi-
zation of this catalog. The QPC also contains an extensible
query execution engine based on iterators [Gra93]. There are
iterators to perform local selections, local joins, remote se-
lections, distributed joins, semi-joins, transfers of files and
sorting, among others. The execution engine also provides
a series of methods used to issue procedural commands (i.e.
ftp requests) and to deploy the application-specific code. The

DAP API

Control Module

Execution Engine

Code
Loader

SQL &XML
Iterators

Procedural
Interface

Data Source Access Interface

I/O API JDBC JNIDOM

Figure 3: DAP Organization

Code Loader module in the execution engine is used to ex-
tract the required code from the code repository, and prepare
it for deployment. The DAP API provides the facilities to
communicate with the remote data sources.

3.3 Data Access Provider (DAP)

The role of a Data Access Provider (DAP) is to provide the
QPC with a uniform access mechanism to a remote data
source. In this regard, the DAP might seem similar to a
wrapper or a gateway. However, the DAP has an exten-
sible query execution engine capable of loading and using
application-specific code obtained from the network with the
help of the QPC. Since a DAP is run at the data source site or
in close proximity to it, MOCHA exploits this capability to
push down to the DAP the code and computation of certain
operators that “filter” the data been queried, and minimize
the amount of data sent back to the QPC. This is a feature
unique to MOCHA. Figure 3 shows the internal organization
of a DAP. Query and procedural requests issued by the QPC
are received through the DAP API, and routed to the Con-
trol Module, where they are decoded and prepared for exe-
cution. Each request contains information for the Execution
Engine in the DAP that includes the kind of task to be per-
formed (i.e. a query plan), the code that must be loaded, and
the access mechanism necessary to extract the data. The exe-
cution engine first calls the Code Loader to load the required
application-specific code, which is delivered to the DAP by
the QPC through a mechanism that will be described in sec-
tion 3.6. Then, it creates iterators for SQL or XML query
requests, or prepares a procedural call to execute operations
such as reading a file from a file system, requesting a Web
page, etc. Notice that the iterators to access a source are built
on top of standard Java packages such as JDBC, DOM (for
XML repositories), Java Native Interface (JNI) and the I/O
routines. Once the DAP has extended its query execution ca-
pabilities, it retrieves the data from the source, maps them
into the middleware schema, and then filters them with the
operators (if any) specified by the QPC in the query plan. The
DAP then sends back to the QPC all values that it produced
so they can be further processed to generate final results.

3.4 Data Server

The Data Server is the server application that stores the
data sets for a particular data site. This element can be
a full-fledged database server, a Web server or even a file
server providing access to flat files. In the current MOCHA

prototype, we provide support for object-relational database
servers such as Informix and Oracle8i, XML repositories and
file systems, since these are among the most commonly used
servers to store the emerging complex data sets.

3.5 Catalog Organization

Query optimizationand automatic code deployment are driven
by the metadata in the catalog. The catalog contains metadata
about views defined over the data sources, user-defined data
types, user-defined operators, and any other relevant infor-
mation such as selectivity of various operators. The views,
data types and operators are generically referred to as “re-
sources” and are uniquely identified by a Uniform Resource
Identifier (URI). The metadata for each resource is speci-
fied in a document encoded with the Resource Description
Framework (RDF), an XML-based technology used to spec-
ify metadata for resources available in networked environ-
ments. In MOCHA, for each resource there is a catalog entry
of the form (URI; RDF File), and this is used by the system
to understand the behavior and proper utilization of each re-
source. The reader is referred to [RMR00a] for more details
about the structure of the URIs, the RDF metadata schema
and other catalog management issues in MOCHA.

3.6 Automatic Code Deployment

In MOCHA, deploying code with application-specific com-
ponents is done by shipping the compiled Java classes con-
taining the implementation of data types and query operators.
To simplify this discussion, we assume that each type or op-
erator is entirely defined in only one Java class; but in gen-
eral, their implementation can span several classes. When a
system administrator needs to incorporate a new or updated
data type or query operator into the system, he/she first stores
the Java class for that resource into a well-known code repos-
itory (see Figure 4). Next, the administrator registers the new
type or operator by adding entries into the system catalog
that indicate the name of the type or operator, its associated
URI, its RDF file, and any other relevant information such
as version number, user privileges, etc. Once the code has
been registered, the new functionality is ready for use in the
queries posed by the users.

The automatic deployment of code starts after QPC re-
ceives a new query request from a client. The first task for
the QPC is to generate a list with the data types and oper-
ators needed to process the query. QPC then accesses the
metadata in the catalog to map each type or operator into
the specific class implementing it. Each class is then re-
trieved from the code repository by the QPC’s code loader
and prepared for distribution. Before the actual execution
of the query starts, QPC distributes the pieces of the plan
to be executed by each of the DAPs running on the targeted
data sites. Afterwards, the QPC starts the code deployment
phase in which it first ships the classes for the data types to
the client and to the DAPs, and then ships the classes for the
query operators to be executed by each DAP. Figure 4 depicts
how the class AvgEnergy:class, which implements func-

tion AvgEnergy(), would be shipped to a remote DAP. Once
the code deployment phase is completed, QPC signals each
DAP to activate its piece of the query plan, and only then,
QPC and the DAPs start processing the data and generating
results, all of which are gathered by QPC and sent back to the
client for visualization purposes.

QPC DAP

Class
AvgEnergy

Informix

AvgEnergy
Class

Code
Repository

Figure 4: Shipping code for AvgEnergy()

It is important to emphasize that the code deployment
phase occurs on-line as an automatic process carried out
completely by the QPC without any human involvement.
There is no need to restart any element in MOCHA before it
can start using the functionality received during the code de-
ployment phase. Instead, each of the QPC, DAPs and client
application contain the necessary logic to load the classes
into their Java run time systems and start using them immedi-
ately. Therefore, the capabilities of each element in MOCHA
can be extended at run time in a dynamic fashion. Notice that
the tasks for the administrators are simplified since they only
need to deal with one or a few repositories where all the code
resides. Upgrades or new functionality are simply added to
the repository, and from there, they are deployed as needed
by MOCHA. To the best of our knowledge, no other system
implements this unique approach in which the middleware is
self-extensible.

One very interesting issue that we are going to address
in depth in the near future, is the possibility for a DAP to
cache frequently used code so it can be reused many times
without the need for repeated delivery. One simple solution
is to have the QPC and DAP exchange information about the
last known modification dates for the classes for types and
operators already imported into a DAP. The DAP informs the
QPC of all instances in which dates do not match, and the
QPC only delivers the code for these cases.

3.7 Organization of Data Types
In MOCHA, the attributes in a tuple are implemented as
Java objects. MOCHA provides a set of well-known Java
type interfaces with the methods needed by the QPC, DAPs
and client applications to handle the classes for data types
correctly. Figure 5 shows the hierarchical structure of the
type system for the MOCHA prototype. The dark rectangles
represent type interfaces and the white ones represent Java
classes for a particular type. At the root of the type hierarchy
is the MWObject interface which identifies a class as one im-
plementing a MOCHA data type, and also specifies the meth-
ods to be used to read/write each data value into the network.

MWObject

MWSmallObject MWLargeObject

MWString

MWNumber

String

Integer

Double

Point
Raster

Rectangle

Polygon

Polyline

Interface

Class

Figure 5: MOCHA Type System

The MWLargeObject and MWSmallObject interfaces ex-
tend MWObject, partitioning all types into two groups: large
objects and small objects. Large objects are used for large
sized types such as images, audio or text documents. Small
objects are used for smaller types such as numbers, strings,
points or rectangles. Additionally, interfaces for character
and numeric types are derived from MWSmallObject. Any
new type added to the system must implement one of the in-
terfaces below MWObject.

3.8 Organization of Query Operators

MOCHA groups query operators into two categories: 1) pro-
jections and predicates, and 2) aggregates. The complex
functions present in projections and predicates are imple-
mented as static methods in a Java class. Figure 6(a) shows
how such functions are evaluated in the executor module
contained by either QPC or a DAP. The query plan created
by QPC indicates the class name and the method name as-
sociated with each function. The executor module uses this
information to create a function evaluation object, which ex-
ecutes the body of the method and hence the query operator.
The executor successively passes tuples to the function eval-
uation object and collects the resulting attributes for further
processing or adds them into the result.

Query
Executor

Tuple

Result

Function
Evaluation

Object

Method
Name

Java
Class
File

(a) Predicates & Projections

Query
Executor

Tuple

Result

Java
Class
File

Aggregate
Object
Internal

State

(b) Aggregates

Figure 6: Operator Evaluation in MOCHA

Aggregates are implemented as Java objects, as shown in
Figure 6(b). The Java class for any aggregate operator imple-
ments the interface Aggregate provided by MOCHA. This
interface specifies three methods that are used to compute the
aggregate value: Reset(), Update() and Summarize(). For

each aggregate operator, the executor creates one aggregate
object for each of the different groups found during the ag-
gregation process. The internal state in an aggregate object
is first set to an initial state by calling Reset(). Then, the
executor successively calls Update() to modify the internal
state in each object using the next tuple at hand and the cur-
rent internal state. Once all the tuples are processed, the final
value for each aggregate is extracted from the internal state
in each aggregate object by calling Summarize().

3.9 Implementation Issues

We now discuss three important implementation issues for
MOCHA: memory management, communications over the
network and security.

3.9.1 Memory Management

In Java, most of the memory management is done by the Java
run time system, the so called Java Virtual Machine (JVM),
and programmers do not need to worry about all the intricate
low-level details regarding object allocation/deallocation. Un-
fortunately, these advantages are often offset by program-
ming practices in which objects are excessively created, and
then discarded after just one use! We found such practices
in some JDBC drivers and proprietary Java database access
APIs in which new objects are created to store column val-
ues each time a new tuple is read from the data source. Our
experience with MOCHA proved that this paradigm is ex-
tremely inefficient for most database applications. The main
reason is that object allocation involves calls to expensive
synchronized methods in the JVM. Since possibly thousands
of tuples are read from a data source during a query, the
overhead of such calls has a devastating effect on perfor-
mance. Moreover, as the number of objects allocated in-
creases, the garbage collector might perform more work each
time is called to dispose of the unused memory. Therefore,
in MOCHA we adopted an aggressive policy of object pre-
allocation and re-use. When an iterator is created by the ex-
ecution engine, the constructor for the iterator creates one
structure to read the columns from the database, and one
structure to store the results to be returned by each call of
the method Next() in the iterator. Thus, our implementa-
tion only creates these objects once and continuously re-uses
them during the course of query processing.

3.9.2 Communications Over the Network

In our initial implementation of MOCHA we used the Java
Remote Method Invocation (RMI) mechanism for the com-
munications between the DAPs and the QPC. RMI is very
similar to CORBA since it provides a communications inter-
face based on method calls to remote object instances. RMI
certainly made our implementation easy and elegant, but it
proved too unstable and slow, specially when tuples con-
taining complex and large types, such as images, where ex-
changed. RMI relies on stubs and skeletons to generate the
remote method calls, and we found the data serialization pro-
tocol to be unstable, occasionally sending incorrect signals

to the receivers, thus causing exceptions when the stubs at-
tempted to unmarshall the data been exchanged. We also
found that at the receiver’s end, multiple objects were allo-
cated each time a new tuple was read, an approach that is sim-
ply too inefficient, as we already discussed in section 3.9.1.
We dealt with these problems by buildingour own communi-
cations infrastructure on top of the network sockets provided
by Java. As result of this decision we needed to incorpo-
rate several methods in the MWObject interface to specify a
generic mechanism to serialize the data in each tuple across
the network. Although this required more effort on our part,
we felt it was an essential task to guarantee that communica-
tions in MOCHA were stable, reliable and efficient.

3.9.3 Security

Since a client, QPC or DAP can dynamically load and ex-
ecute compiled Java code, it is necessary to have a secu-
rity mechanism to guarantee that the code does not exe-
cutes dangerous operations on the host machines. In most
object-relational engines, user-defined code is assumed to be
“trusted”, and it is the responsibility of the programmer to
guarantee that the code is safe. In a large-scale environment,
this kind of policy is unreasonable, and therefore, MOCHA
leverages on the security architecture provided by Java. Ad-
ministrators can configure the clients, QPC and DAPs to im-
plement fine-grained security policies as supported by the
SecurityManager class provided by Java. These policies
include restrictions on the access to local file systems, allo-
cation of network sockets, creation of threads, etc. Notice
also that since the DAP is run as a process independent of the
Data Server, a crash in a DAP will likely go unnoticed by the
Data Server. It is important to realize, however, that security
comes at the price of extra overhead. Each time an operation
which the administrator defines as dangerous is attempted, a
call to the security manager will be made to determine if the
operation can proceed or not. Therefore, care must be taken
to avoid a situation in which, for example, every call to an
user-defined predicate triggers multiple calls to the security
manager. In our view, security is a very important and com-
plex issue in itself, deserving more careful exploration and
done in close collaboration with the programming languages
community, since the run time system must efficiently sup-
port the implementation of the security mechanisms.

4 Query Processing Framework

We have designed MOCHA to capitalize on its ability to
ship code in order to generate query plans that minimize
data movement. Following a cost-based approach, MOCHA
pushes the evaluationof data-reducing operators to the DAPs
running on the data sites and the evaluation of data-inflating
operators to the QPC. The philosophy behind this scheme is
that data movement typically is the major performance bot-
tleneck in large-scale environments because network band-
width is a shared resource, relatively expensive to upgrade,
and the applications aggressively compete to obtain a frac-

tion of it. Notice that problems with heavy user loads on
remote servers can be alleviated with replication, caching
or even by upgrading to better server hardware since CPUs,
memory and disks are becoming more powerful and less ex-
pensive. Therefore, MOCHA takes the pragmatic approach
of first optimizing to minimize network costs.

In MOCHA, data-reducing operators are those operators
that reduce the number and/or the size of the tuples in the re-
sult. Under this category we include: a) predicates with low
selectivity, which filter out unnecessary tuples, b) predicates
whose arguments are large-sized attributes that are not part of
the result, c) projections that map large-sized attributes into
scalars or smaller values, d) aggregates that map sets of tu-
ples into a few distilled values and e) semi-joins which elim-
inate tuples that do not participate in a join. For example,
the projection operatorAvgEnergy(image)presented in sec-
tion 2.2 is data-reducing because it maps a 1MB image into
a 8-byte floating-point number. Whenever possible, data-
reducing operators are evaluated by the DAPs, using a new
query processing policy that we call code shipping. This
policy specifies that a query operator and its code will be
shipped to and executed by the DAP for a given data source.
Code shipping can be viewed as query shipping enhanced
with the capability to materialize the code for an operator re-
motely, as described in section 3.6.

On the other hand, data-inflating operators are those that
inflate the data values and/or present them in many forms,
projections, rotations, sizes and levels of detail. Recall the
Earth Science application from section 2.1. Suppose a user
from the State of Virginia now poses the following query to
the data site in the State of Maryland:

SELECT time; location; IncrRes(image; 2X)
FROM Rasters

This query retrieves all images from the table Rasters in
Maryland, but function IncrRes() increases the resolution
of each image by a factor 2X. Therefore, the projection
IncrRes(image; 2X) is data-inflating since it synthesizes a
new image that is four times larger than the original one.
Other kinds of data-inflating operators are those used to vi-
sualize the same data value from many perspectives, for ex-
ample, an operator that rotates an image by a certain degree �
without changing its size or one that allows a user to visual-
ize a three-dimensional solid from different orientations (i.e.
top, bottom or sideways). In these operators, the same data
value is repeatedly transformed, and therefore, these trans-
formations are more efficiently done near the client. For
that reason, MOCHA executes data-inflating operators at the
QPC using a data shipping strategy.

In MOCHA, each complex aggregate, predicate or projec-
tion operator
 has an associated execution cost which has
the general form:

Cost(
) = CompCost(
) +NetworkCost(
)

Here CompCost(
) is the total cost of computing
 over
an input relation R. The NetworkCost(
) is total cost

of data movement incurred while executing
 on R. If

is evaluated at the DAP, then this component is the cost of
sending to the QPC the results generated after applying
 to
all tuples in R. Otherwise, when
 is evaluated at the QPC,
this component is the cost of moving to the QPC each of the
arguments to
 in each of the tuples in R. The interested
read can find more specific details and some of the exact cost
formulas for each kind of operators in [RMR00b].

The cost of each operator
 is used in the proposed opti-
mization algorithm for MOCHA in order to find its proper
execution placement. Before going into further details about
the algorithm we need to introduce a new cost metric, the Vol-
ume Reduction Factor for an operator, which is used in the
optimization process.

Definition 4.1 The Volume Reduction Factor, V RF , for
an operator
 over an input relation R is defined as:

V RF (
) =
V DT

V DA

(0 � V RF (
) <1);

where V DT is the total data volume to be transmitted after
applying
 toR, andV DA is the total data volume originally
present in R.

Therefore, an operator
 is data-reducing if and only if its
V RF is less than 1; otherwise, it is data-inflating. In a simi-
lar fashion, we can define the Cumulative Volume Reduction
Factor for a query plan P .

Definition 4.2 The Cumulative Volume Reduction Fac-
tor,CV RF , for a query planP to answer queryQ over input
relations R1; :::; Rn is defined as:

CV RF (P) =
CVDT

CVDA

(0 � CV RF (P) <1);

where CVDT is the total data volume to be transmitted
over the network after applying all the operators in P to
R1; :::; Rn andCVDA is the total data volume inR1; :::; Rn.

The intuition here is that the smaller the CV RF of the
plan, the less data it sends over the network, and the better
performance the plan provides. This observation is validated
by the results in sections 5.3-5.4.

Figure 7(a) shows the pseudo-code for the proposed Sys-
tem R-style optimizer for MOCHA. Consider, for example,
the query: �g(A) 1 �f (�(B)), where predicate g is data-
reducing and projection f is data-inflating. The algorithm
first runs steps (1)-(3) to build selection plans for each of the
expressions �g(A) and �f (�(B)). Step (2) builds an initial
plan with two nodes, one to be executed by the QPC (a QPC
node), and one to be executed by the DAP (a DAP node) as-
sociated with the particular relation (A or B). At this point,
the QPC node only has annotations that indicate the output
to be returned, and the DAP node has annotations that indi-
cate the attributes to be extracted. This initial plan is then
modified in step (3) to add the user-defined operators that the
middleware must execute. Figure 7(b) shows the algorithm
used to place these complex operators, given as input a rela-
tion R and a plan P . First, the set of complex operators O

procedure MOCHA Optimizer(R1; :::; Rn):
/* find best join plan */
1. for i = 1 to n do
2. P selectP lan(Ri)

3. optP lan(Ri) P laceComplex(P;Ri)

4. for i = 2 to n do
5. for all S � fR1; :::; Rng s.t. jSj = i do
6. bestP lan dummy plan with infinite cost
7. for all Rj; Sj s.t. S = fRjg [Sj do
8. P joinP lan(optP lan(Sj); optP lan(Rj))

9. P P laceComplex(P;Rj)

10. if cost(P) � cost(bestP lan)

11. bestP lan P

12. optP lan(S) bestP lan

13. return optP lan(fR1; :::; Rng)

(a) System R-style Optimizer

procedure P laceComplex(P;R):
/* find best operator placement */
1. O getComplexOps(P;R)
2. nDAP findDAP (P;R)
3. nQPC findAncestorQPC(P; nDAP)
4. for all
 2 O do f
5. if V RF (
) < 1
6. insert(
; nDAP)
7. else
8. insert(
; nQPC)g
9. sortRank(nDAP)
10. sortRank(nQPC)

(b) Operator Placement

Figure 7: MOCHA Optimization Algorithm

that can be applied to the input relation is found with func-
tion getComplexOps(). Next, the DAP node used to access
the relationR in plan P is found with function findDAP ().
This DAP node is then used to find its nearest ancestor node
in the plan P which also is a QPC node. Then, each operator

 in the setO is placed at its best execution location based on
its V RF value. Those operators with V RF less than 1 are
placed at the DAP node, and the rest are placed at the QPC
node. These heuristics serve to minimize the CV RF of the
plan P , and hence, its data movement and cost. In particu-
lar, they are used to produce plans withCV RF less or equal
to 1. Finally, the complex predicates added to each node are
sorted based on increasing value of the metric: rank(p) =
(SFp � 1)=CompCost(p), where SFp is the selectivity of
predicate p, as proposed in [HS93]. The result of this pro-
cess on expressions �g(A) and �f (�(B)) is shown on the
left hand side of Figure 8. The gray nodes are QPC nodes,
and the white ones are DAP nodes.

Once the single table access plans have been built, the al-
gorithm in Figure 7(a) runs through steps (4)-(13) to explore
all different possibilities to perform the join, incrementally
building a left-deep plan in which a new relationRj is added
into an already existing join plan Sj for a subset of the rela-
tions. This task is done by function joinP lan() in step (8).
After the join plan is built, the algorithm again places com-
plex operators in step (9). These are operators whose argu-
ments come from more than one relation. Finally, the plan

Output,
Join A B,
Eval f()

Output

Eval g(),
Select A Select B

Output,
Eval f()

Eval g(),
Select A

Select B

Figure 8: Optimization in MOCHA

P with smallest cost is selected. Here the cost of the plan
includes the join cost and the evaluation costs of all com-
plex operators. The final join plan for our example is shown
on the right hand side of Figure 8. Notice that our algo-
rithm is not exhaustive in terms of possible alternatives for
complex operator placement (as is [CS96] for predicates).
This is an intentional compromise done to avoid the extra
combinatorial explosion of such an exhaustive search. At
present, we have not completed the implementation of the
cost-based query optimizer for the QPC although the ma-
jor building blocks, such as query plans and search proce-
dures, are in place. Since we have to deal not only with com-
plex predicates, but also with complex projections and ag-
gregates, we are exploring a series of pruning heuristics to
reduce the search space of the optimizer, and speed up the
optimization process.

5 Performance Evaluation

To validate our design choices and performance expectations
for MOCHA, we benchmarked our prototype to characterize
its behavior and show: a) the feasibility of using Java to
implement types and operators, b) the benefits obtained by
using code shipping, c) the need to use data shipping for
data-inflating operators and d) that VRF is an accurate cost
estimator for choosing the best query plan.

5.1 Benchmark Data and Queries

We used scientific data sets and queries from the Sequoia
2000 Benchmark [Sto93] to test our MOCHA prototype.
Typically, these type of data sets are stored at different sites,
and the applications manipulating them are inherently dis-
tributed. We used the regional version of the benchmark with
data sets corresponding to the State of California, and Table
1 depicts the schema and other relevant information about
these data sets. Similarly, Table 2 shows the queries used in
our experiments, and each one is explained in the follow up
sections. We derived these queries from the ones in Sequoia
by adding and combining several new complex operators.

5.2 Experimental Methodology

We implemented the MOCHA prototype using Sun’s Java
Developers Kit 1.2, and all middleware data types and op-
erators were implemented in classes containing 100% Java
code. We used the Informix Universal Server and our own
spatial datablade to provide support at the DBMS level for

Relation Description Cardinality Size
Polygons(landuse : Integer; location : Polygon) Polygons enclosing different types of land regions. 77,643 18.8MB
Graphs(identifier : Integer; graph : Polyline) Graphs representing water drainage networks. 201,650 31MB
Rasters(time : Integer; band : Integer;

location : Rectangle; data : Raster;

lines : Integer; samples : Integer)

Satellite raster images made from weekly energy read-
ings from Earth’s surface regions. Each sample (pixel)
represents a point on the surface region.

200 200MB

Table 1: Datasets

Q1: SELECT landuse,
TotalArea(location),
TotalPerimeter(location)

FROM Polygons
GROUP BY landuse;

Q2: SELECT time, band, location,
Clip(data,lines,samples,WIN)

FROM Rasters;

Q3: SELECT time, band, location,
IncrRes(data,lines,samples,2X)

FROM Rasters;

Q4: SELECT identifier
FROM Graphs
WHERE NumVertices(graph) > N
AND ArcLength(graph) > S;

Q5: SELECT R1.location, R1.time, R2.time,
(AvgEnergy(R1.data) - AvgEnergy(R2.data))
FROM Rasters1 R1, Rasters2 R2
WHERE Equal(R1.location,R2.location);

Table 2: Benchmark Queries

the data sets described in section 5.1. To provide connectiv-
ity between Informix and the DAP, we developed a JDBC-
like library with support for the retrieval of complex types.
In all the experiments discussed in this paper, we ran QPC
on a Sun Ultra SPARC 60 with 128MB of memory. For the
experiments in section 5.3, one DAP and Informix ran on a
Sun Ultra SPARC 1 with 256MB of memory. In addition, for
the experiment in section 5.4 we added a Sun Ultra SPARC
5 with 128 MB of memory, to run a second pair of DAP and
Informix server. All machines ran Solaris 2.6 and were con-
nected to a 10Mbps Ethernet network, and this choice of net-
work was made mainly to obtain reproducible results. But
in practice, we expect MOCHA to be run on wide area envi-
ronments over which the available bandwidthwould be much
smaller, making MOCHA’s benefits even more pronounced.

The main objective of this study is to clearly show the sub-
stantial performance benefits provided by a system that uses
code shipping, such as MOCHA, over one that lacks this ca-
pability, and must rely heavily on data shipping. We config-
ured QPC to use query plans that place all operators on either
the DAP (with code shipping) or the QPC (with data ship-
ping), which permits the study of each operator under each
strategy. In each experiment, we ran the query plan on the
MOCHA prototype and measured execution time from the
time QPC starts deploying code to the time it receives the
last tuple in the result. We present these results using graphs,
in which the x-axis shows the query been tested and the y-
axis gives its execution time under each strategy. Execution
time was divided into four components: 1) DB Time- time
spent reading tuples from the data source by DAP; 2) CPU
Time- time spent evaluating all complex operators; 3) Net
Time- time spent sending data from a DAP to QPC; and 4)
Misc Time- time spent on all initializationand cleanup tasks.
The Net Time component includes both network transmis-
sion time and the communications software overhead. All
values reported as execution time are averages obtained from

five independent measurements. In addition, we measured
the total volume of data accessed by each plan (CVDA),
the total volume of data transmitted by each plan (CVDT)
and the volume of data in the query result. In each case, the
CV RF for each plan was computed from these measured
values. We ran all experiments late at night, when all ma-
chines and the network were unloaded.

5.3 Queries Over a Single Data Source

0

200

400

600

800

1,000

1,200

1,400

1,600

1,800

Ex
ec

uti
on

 Ti
me

 (s
ec

s)

DB Time

CPU Time

Net Time

Misc Time

Query
Q1 Q2 Q3

DAP
DAP

DAP

QPC QPC
QPC

(a) Execution Times

Query Site CVDA CVDT Volume in Result CVRF

Q1 DAP 18.8MB 740B 740B 4x10�5

QPC 18.8MB 18.8MB 740B 1
Q2 DAP 200MB 40MB 40MB 0.20

QPC 200MB 200MB 40MB 1
Q3 DAP 200MB 800MB 800MB 4

QPC 200MB 200MB 800MB 1

(b) Data Volumes

Figure 9: Performance for Q1, Q2 and Q3

We used queries Q1, Q2 and Q3 from Table 2 to measure the
effect of complex aggregates and projections on the volume
of data transmitted during query processing. Queries Q1 and
Q2 contain data-reducing operators; query Q1 is an aggrega-
tion query that computes the total area and total perimeter of
all the polygons covering each type of land region. In Q2,
each image in table Rasters is clipped into an image whose
size is determined by the clipping box WIN, which we chose
so as to generate an image five times smaller than the origi-
nal. On the other hand, Q3 contains a data-inflating projec-
tion implemented by function IncrRes(). In this case, each
image is transformed into a new image with twice the res-
olution and four times the size of the original. Figure 9(a)
demonstrates that operator evaluation at the DAP with code
shipping is the best option to execute Q1 andQ2, as it results

in performance improvements of 4-1 and 3-1, respectively.
In each case, the performance gain is achieved by capitaliz-
ing on code shipping to run the data-reducing operators close
to the data source and only send to the QPC a few result val-
ues. Figure 9(b) shows the large savings in the volume of
data movement that can be obtained by using code shipping
to evaluate these operators at the data site. However, code
shipping is totally inadequate to runQ3 at the DAP since this
query contains a data-inflating operator. The evaluation of
projectionIncrRes(data; lines;samples;2X)at the DAP
results in the transmission of tuples four times larger than
those sent when QPC executes it, and the network cost is in-
creased by a factor of 4. Notice, however, that MOCHA will
not use code shipping in this case, since any data-inflatingop-
erator will be evaluated at the QPC using data shipping. The
results in Figure 9(b) emphasize the accuracy of the V RF in
selecting the best operator placement, because in each case
the best alternative is the one with the smallest CV RF .

0

100

200

300

400

500

600

700

800

Ex
ec

uti
on

 Ti
me

 (s
ec

s)

DB Time

CPU Time

Net Time

Misc Time

Selectivity
0% 25% 50% 75% 100%

QPC QPC QPC QPCQPC

DAP
DAP DAP

DAP
DAP

(a) Execution Times

Selectivity Site CVDA CVDT Volume in result CVRF

0 DAP 31MB 0B 0B 0
QPC 31MB 31MB 0B 1

0.25 DAP 31MB 200KB 200KB 0.01
QPC 31MB 31MB 200KB 1

0.50 DAP 31MB 400KB 400KB 0.01
QPC 31MB 31MB 400KB 1

0.75 DAP 31MB 600KB 600KB 0.02
QPC 31MB 31MB 600KB 1

1 DAP 31MB 790KB 790KB 0.02
QPC 31MB 31MB 790KB 1

(b) Data Volumes

Figure 10: Performance for Q4

Query Q4 contains two complex predicates which com-
pare the number of vertices and the total length of each
drainage network against two constants. The execution times
for Q4 under various selectivity values are shown in Figure
10(a). As we can see, execution at the DAP outperforms ex-
ecution at the QPC in all cases regardless of selectivity, with
performance improved by a factor of 3-1 for the first three se-
lectivity values and 2-1 for the remaining ones. By pushing
the code and evaluation of the predicates in Q4 to the DAP,
the system avoids shipping the large-sized attribute graph

over the network, as seen from Figure 10(b), thus provid-

ing substantial performance gains. Figure 10(b) shows that
again the V RF is an accurate metric for determining the best
plan for a query with complex predicates. One important
concept emerging from the results in Figures 10(a)-10(b) is
that an operator placement metric based on selectivity and re-
sult cardinality is not the best metric for cost estimation be-
cause it fails to take into account the volume of transmitted
data, as happens in Q4. Consider the case of 50% selectiv-
ity in Q4. From Figure 10(b), we can see that code ship-
ping only moves 400KB (1% of the original data volume)
from the DAP to QPC, not 15MB or half of the volume in
the Graphs table. In fact, forQ4 the percentage of data trans-
mitted is always much smaller than what would be expected
if selectivity alone were used to make the estimate. The full
set of results in [RMR00b] shows that selectivity might also
under estimate the actual amount of data transferred. As a re-
sult, a query operator placement scheme based on selectivity
and result cardinality might produce plans with poor perfor-
mance for distributed queries because of these inaccuracies
since these plans might transfer a larger (smaller) data vol-
ume than expected. In contrast, the V RF combines the se-
lectivity information, cardinality and the size of the attributes
in the tuples been transmitted to make a better estimate of the
cost of a query operator and determine its proper placement.

5.4 Queries Over Multiple Data Sources
For this category we used query Q5, from Table 2, which
performs a distributed join between two tables, Rasters1
and Rasters2. The schema for these tables is the same as
the one for table Raster but the images where reduced to
128KB in size, and there are only three locations common
to both of these tables. Table Rasters1was stored on a Sun
Ultra SPARC 1, which we call Site1, while Rasters2 was
stored on a Sun Ultra SPARC 5, which we call Site2. Q5

joins all tuples that coincide on the location attribute, and
projects the location, the week number for each reading and
the difference in the average energy between the readings.

0

20

40

60

80

100

120

R
es

po
ns

e
Ti

m
e

(s
ec

s)

DB Time

CPU Time

Net Time

Join Time

Misc Time

DAP

QPC

Figure 11: Execution Time for Q5

Figure 11 shows the execution time for Q5 for the al-
ternatives in which complex operators in the join are exe-
cuted at the QPC or at the DAP; the join itself is performed
at the QPC. When complex operators must be executed at
the QPC, attributes time, location and data in all tu-
ples from each of the relations have to be moved to QPC.
As tuples arrive, function AvgEnergy() is evaluated to per-
form the projections, and then the tuples are stored to disk,

from which they are later read to perform a hash join op-
eration. In this figure, the Join Time component indicates
the cost of accessing disk to perform this join operation.
Notice that performance is dominated by the cost of trans-
ferring the images over the network. On the other hand,
the join performs over two and a half times better when
the DAP evaluates the complex operators. In this case, a
2-way semi-join can be performed by computing, at each
DAP, the semi-joins Rasters1nRasters2 (at Site1) and
Rasters2nRasters1 (at Site2), using the complex predi-
cate in Q5 for both of them. After each semi-join operation
is performed, functionAvgEnergy() is evaluated and all pro-
jections are taken. Thus, only attributestime, locationand
AvgEnergy(data) are moved from a DAP to QPC, where
they are first materialized to disk and then joined. By using
this strategy the network cost is minimized and the overall
execution time of the query is substantially reduced. In terms
of data movement, both plans access 30.6MB worth of data
from the data sources, and produce a result of size 49.2KB.
However, the first approach moves 30.6MB worth of data
over the network, while the second approach only moves
3.8KB. This translates into a CV RF values of 1 and 0.0001,
respectively. Hence, experimental evidence confirms that the
V RF can be used to determine the best operator placement
in the plan for a distributed join.

6 Conclusions

We have proposed MOCHA as an alternative database mid-
dleware solution to the problem of integrating data sources
distributed over a network. We have argued that the schemes
used in existing middleware solutions, where user-defined
functionality for data types and query operators is manually
deployed, is inadequate and will not scale to environments
with hundreds of data sources. The high cost and complex-
ity involved in having administrators installing and main-
taining the necessary software libraries into every site in the
system makes such approach impractical. MOCHA, on the
other hand, is a self-extensible middleware system written
in Java, in which user-defined functionality is automatically
deployed by the system to the sites that do not provide it.
This is realized by shipping Java classes implementing the
required functionality to the remote sites. Code shipment in
MOCHA is fully automatic with no user involvement and
this reduces the complexity and cost of deploying function-
ality in large systems. MOCHA classifies operators as data-
reducing ones, which are evaluated at the data sources, and
data-inflating ones, which are evaluated near the client. Data
shipping is used for data-inflating operators, and a new policy
named code shipping is used for the data-reducing ones. The
selection between code shipping and data shipping is based
on a new metric, the Volume Reduction Factor, which mea-
sures the amount of data movement in distributed queries.
Our experiments with the MOCHA prototype show that se-
lecting the right strategy and the right site to execute the op-
erators can increase query performance by a factor of 4-1,

in the case of aggregates, or 3-1, in the case of projections,
predicates and joins. These experiments also demonstrated
that the Volume Reduction Factor (V RF) is a more accurate
cost metric for distributed processing than the standard met-
ric based on selectivity factor and result cardinality because
V RF also considers the volume of data movement.

References
[CGMH+94] S. Chawathe, H. Garcia-Molina, J. Hammer, K. Ireland, Y.

Papakonstantinou, J. Ullman, and J. Widom. The TSIMMIS
Project: Integration of Heterogeneous Information Sources.
In Proc. of IPSJ Conf., Tokyo, Japan, 1994.

[Inf97] Informix Corporation. Virtual Table Interface Programmer’s
Guide, September 1997.

[Ora99] Oracle Corporation. Oracle Transparent Gateways, 1999.
http://www.oracle.com/gateways/html/transparent.html.

[CS96] S. Chaudhuri and K. Shim. Optimization of Queries with
User-defined Predicates. In Proc. 22nd VLDB Conf., pp. 87–
98, Bombay, India, 1996.

[FJK96] M.J. Franklin, B.T. Jónsson, and D. Kossmann. Performance
Tradeoffs for Client-Server Query Processing. In Proc. ACM
SIGMOD Conf., pp. 149–160, Montreal, Canada, 1996.

[GMSvE98] M. Godfrey, T. Mayr, P. Seshadri, and T. von Eicken. Secure
and Portable Database Extensibility. In Proc. ACM SIGMOD
Conf., pp. 390–401, Seattle, WA, USA, 1998.

[Gra93] Goetz Grafe. Query Evaluation Techniques for Large
Databases. ACM Computer Surveys, 25(2):73–170, June
1993.

[HKWY97] L.M. Haas, D. Kossmann, E.L. Wimmers, and J. Yans. Opti-
mizing Queries Across Diverse Data Sources. In Proc. 23rd
VLDB Conf., pp. 276–285, Athens, Greece, 1997.

[HS93] J.M. Hellerstein and M. Stonebraker. Predicate Migra-
tion: Optimizing Queries with Expensive Predicates. In
Proc. ACM SIGMOD Conf., pp. 267–276,Washington, D.C.,
USA, 1993.

[ML86] L.F. Mackert and G.M. Lohman. R* Optimizer Validation
and Performance Evaluation for Distributed Queries. In
Proc. 12th VLDB Conf., Kyoto,Japan, 1986.

[MS99] T. Mayr and P. Seshadri. Optimization of client-site user-
defined functions. In Proc. ACM SIGMOD Conf., Philadel-
phia, PA, USA, 1999.

[RMR00a] M. Rodrı́guez-Martı́nez and N. Roussopoulos. Automatic
Deployment of Application-Specific Metadata and Code in
MOCHA. In Proc. 7th EDBT Conf., Konstanz, Germany,
2000.

[RMR00b] M. Rodrı́guez-Martı́nez and N. Roussopoulos. MOCHA:
A Self-Extensible Database Middleware System For Dis-
tributed Data Sources. TechnicalReport UMIACS-TR 2000-
05, CS-TR 4105, University of Maryland, January 2000.

[RS97] M.T. Roth and P. Schwarz. Don’t Scrap It, Wrap It! A
Wrapper Architecture for Legacy Data Sources. In 23rd
VLDB Conf., Athens, Greece, 1997.

[SAC+79] P.G. Selinger, M.M. Astrahan, D.D. Chamberlin, R.A. Lo-
rie, and T.G. Price. Access Path Selection in a Relational
Database Management System. In Proc. ACM SIGMOD
Conf., pp. 23–34, Boston, MA, USA, 1979.

[SLR97] P. Seshadri, M. Livny, and R. Ramakrishnan. The Case for
Enhanced Abstract Data Types. In Proc. 23rd VLDB Conf.,
pp. 66–75, Athens, Greece, 1997.

[Sto93] M. Stonebraker. The SEQUOIA 2000 Storage Benchmark.
In Proc. ACM SIGMOD Conf., Washington, D.C., 1993.

[TRV96] A. Tomasic, L. Rashid, and P. Valduriez. Scaling Heteroge-
neous Databases and the Design of DISCO. In Proc. 16th
ICDCS Conf., Hong Kong, 1996.

