PAGE
2
ICOM 4035: Exam2: Name:__

Department of Electrical and Computer Engineering

University of Puerto Rico

Mayaguez Campus

ICOM 4035 – Data Structures (CS2)

Fall 2002

Midterm Exam # 2
	Name:

	Student Number:

	Section:

Instructions:

1. Write your name on all pages of this exam now!

2. You have two hours to complete this exam. Use your time wisely. Do not spend too much time on a problem, when you can work on others.

3. There are six problems for a maximum score of 110 points, but your score will be averaged using 100 points. Complete as many problems as you can, and earn as many points as possible

4. Read each question carefully, and show all the work you used to generate your answer.

5. To receive partial credit, you must show all the work you used to generate your answer.

GOOD LUCK!
Scores

	1
	/20

	2
	/15

	3
	/15

	4
	/10

	5
	/30

	6
	/20

	Total
	/100

Problem 1. (20 points) True or False about general concepts

Determine whether each of the following statements is true or false. For those that you declare as false, your must explain your answer.

a) (5 pts) If a constructor for a class X allocates memory space using the new operator, then the destructor of the class should have code to determine if this memory space is still allocated before the object destruction, and if so, use the operator delete to free that memory.
b) (5 pts) Suppose that we have a class Student and another class Honor_Student which inherits from class Student. The following function is a correct way to read a Honor_Student from the input terminal.
Honor_Student get_student_info(){

string name;

int age;

Student result;

cout << “Enter the name: “;

cin >> name;

cout << “Enter the age: “;

cin >> age;

result = Student(name, age);

return result;
}
Problem 1 (continuation)
c) (5 pts) The idea of making the constructor of the List_Iterator class private is to make sure that only the member methods from class List were allowed to create iterators to a list.
d) (5 pts)Consider the operation insert(const value_type& obj) from class List of this course. The following is a correct alternative implementation of that method.
void List:insert(const value_type& obj){

Node *temp = NULL;

if (header != NULL){

temp = header->next;

}

header = new Node;

header->data = obj;

header->next = temp;

}

Problem 2. (15 points) Running Times and Big-O Notation
Use Big-O notation to provide a bound on the running time complexity of the following functions. Justify your answer.
a) (5 pts)

void List:print_to_screen() const {

for(List_iterator iter = this->first();

iter.has_data();

iter.next()){

cout << iter.get_data() << endl;

}

}
b) (5 pts)
//s is a name to be found in a list L
void find_name(const string s, const List<string>& L){

List_Iterator<string> iter = L.find(s);

if (iter.has_data()){

cout << “Name: “ << s << “ is on the list.”

<< endl;

}

else {

cout << “Name: “ << s << “ is not on the list.”

<< endl;

}

}

Problem 2. (continuation)
c) (5 pts)

template <typename Item>

void List_Copier(List<Item>& src, List<Item>& dst){

src.make_empty();

for (List_Iterator<Item> iter = src.first();

iter.has_data();

iter.next()){

List_Iterator<Item> iter2 =

dst.find(iter.get_data());

if (!iter2.has_data()){

dst.insert(iter.get_data());

}

}
}

Problem 3 (15 points) Tracing Operations on a Class
Trace the following operations on an instance of a singly-linked list (i.e. the class List) container class as implemented in the lectures. Write your answer on the next page of this exam.
List<string> L();

L.insert(“Jil”);

L.insert(“Ron”);

L.insert(“Jil”);

L.erase(“Jil”);

List_Iterator<string> iter = L.find(“Jil”);

L.insert(“Mel”, iter);

cout << L.size() << endl;

cout << L.erase(“Bob”) << endl;

List_Iteratpr<string> iter2 = L.first();
cout << iter2.get_data() << endl;

L.insert(“APU”);

cout << L.size() << endl;

Problem 3. (Continuation)

Problem 4. (10 points) Understanding of Constructors and Destructors
Consider the following class, called Student, which is used to represent the name, student number, age, and GPA of a college student.

class Student {

public:

Student(); // Default constructor

Student(string name, char *sid, int id_len, int age,
 double gpa);

Student(const Student& S); // copy constructor

~Student(); // destructor

string get_name(); // return the student name

char *get_sid(); // return the student id number

int get_sid_size(); //return the student id length

int get_age(); // return the student age

double get_gpa(); // returns the student gpa

private:

string name; // student name

char *sid; // student id

int sid_len; // student id length

int age; // student age

double gpa; // student gpa

};

Implement the copy constructor for the class Student. This copy constructor must create a deep copy of the original object. Write your solution on the next page of this exam. (10 pts)
Problem 4. (Continuation)

// Class Student Copy Constructor

Problem 5 (30 Points) Using the Singly-Linked List Container Class
The Singly-Linked List container class discussed in class (no templates version) can be used to implement a Set container class. Recall the a set is a collection of items with no duplicates and no particular order. Consider the following declaration of a Set container class.

#include “List.h”

class Set {

public:

typedef List::size_type size_type; // size type stuff

Set(); // default constructor

void add(const value_type& obj); // add a new item

// determines if an item is in the set

bool find(const value_type& obj) const;

// remove element from set

bool erase(const value_type& obj)

// equality comparison operator

bool operator == (const Set& S) const;

// determines if S is a subset of this object

bool is_subset(const Set& S) const;

size_type size() const; // get the set size

// Self-Union

const Set& operator+=(const Set& S);

// Self-Intersection

const Set& operator&=(const Set& S);

private:

 List set_vals;
};

Using this information answer the following three questions.
NOTE: In all cases, you may assume the existence of functions find() and size() from the Set class.
Problem 5. (continuation)
a) Implement the member function is_subset(). If an object A is a set and object B is another set, then a call to A.is_subset(B), will return true is B is a subset of A, or false otherwise. Recall that a set B is a subset of A if and only if all the elements in B are also in A. (15 pts)
// Subset function

bool Set::is_subset(const Set& S) const {

Problem 5 (Continuation)

b) Implement the overloaded operator &=, which implements the operation of Intersection-Assignment. If an object A is a set and object B is another set, then a call to A&=B, will compute the expression A = A (B. Recall that set intersection does not add duplicates! For example, if A = {Tom, Kil, Key, Ron}, and B={Ron, Bill, Kil, APU}, then A (B = {Ron, Kil}. (15 pts)

// Intersection-Assignment operator

const Set& Set::operator&=(const Set& S) {
Problem 6. (20 points) Understanding of List implementations
A sorted singly-linked list is another kind of linked list in which the nodes are kept in increasing sorted order based on the data value stored at the nodes. The following diagram illustrates this.

[image: image1.emf]header

header

Jil

header

Jil

Empty List

One Element List

Four Element List

Ken Mel Ned

The class Node in this implementation will be:
template <typename Item>

class Node{

public:

Item data;

Node *next;

};
Like before, the class List<Item> will have one field, namely the pointer header to the first element in the sorted singly-linked list. The type of field header is Node<Item> *.
Using this information, answer the following two questions. In all cases, you must write any auxiliary function that you use.
Problem 6 (continuation)

a) Implement the function insert(), which adds a new element to the list at the proper position in the list, based on the sorted order. Recall to handle the case were the header is equal to NULL. See Figure 1 on the Appendix to see the result of an insertion on a sorted singly-linked list. (10 pts)

template <typename Item>

void List<Item>::insert(const Item& obj){

b) Implement the function erase(), which removes an existing element from the sorted singly-linked list. The function returns true is the element is found and removed, or false otherwise. The functions must keep the sorted order in the list. Recall dealing with the case in which the element to erase is at the header. See Figure 2 on the Appendix to see the result of an erase on a list. (10 pts)

template <typename Item>

bool List<Item>::erase(const Item& obj){
Appendix

[image: image2.emf]Figure 1: Insertion into a Sorted Singly-Linked List

header

Jil Ken Mel Ned

header

Jil Ken Mel Ned

L.insert(Lee);

Lee

[image: image3.emf]Figure 2: Deletion from a Sorted Singly-Linked List

header

Jil Ken Mel Ned Lee

L.erase(Mel);

header

Jil Ken Ned Lee

_1096223043.ppt

Figure 1: Insertion into a Sorted Singly-Linked List

header

Jil

Ken

Mel

Ned

header

Jil

Ken

Mel

Ned

L.insert(Lee);

Lee

_1096223044.ppt

header

header

Jil

header

Jil

Empty List

One Element List

Four Element List

Ken

Mel

Ned

_1096223042.ppt

Figure 2: Deletion from a Sorted Singly-Linked List

header

Jil

Ken

Mel

Ned

Lee

L.erase(Mel);

header

Jil

Ken

Ned

Lee

